Advanced prosthetics have for the past few years begun tapping into brain signals to provide amputees with impressive new levels of control. Patients think, and a limb moves. But getting a robotic arm or hand to sense what it’s touching, and send that feeling back to the brain, has been a harder task.
The U.S. Defense Department’s research division last week claimed a breakthrough in this area, issuing a press release touting a 28-year-oldparalyzed person’s ability to “feel” physical sensations through a prosthetic hand. Researchers have directly connected the artificial appendage to his brain, giving him the ability to even identify which mechanical finger is being gently touched, according to the Defense Advanced Research Projects Agency (DARPA). In 2013, other scientists at Case Western Reserve University also gave touch to amputees, giving patients precise-enough feeling of pressure in their fingertips to allow them to twist the stems off cherries.
The government isn’t providing much detail at this time about its achievement other than to say that researchers ran wires from arrays connected to the volunteer’s sensory and motor cortices—which identify tactile sensations and control body movements, respectively—to a mechanical hand developed by the Applied Physics Laboratory (APL) at Johns Hopkins University. The APL hand’s torque sensors can convert pressure applied to any of its fingers into electrical signals routed back to the volunteer’s brain.
No comments:
Post a Comment