Search This Blog

Tuesday, February 19, 2013

Supercharged antioxidants



The University of Sydney   

 

Antioxidants fight free radicals and help us combat oxidative stress. Researchers used supercomputers to design improved antioxidants to boost the power of natural antioxidants to help stave off ageing-related diseases.
Image: Robyn Mackenzie/Shutterstock
The future of keeping ageing-related diseases at bay lies with the supercomputer, according to scientists from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at the University of Sydney.
The research, led by Professor Leo Radom from the University's School of Chemistry, and Dr Amir Karton, University of Western Australia, has used sophisticated quantum chemistry and powerful supercomputers to design improved antioxidants which will help stave off ageing-related diseases such as heart disease, cancer, diabetes, and Alzheimer's disease.
Their work was published in the Journal of the American Chemical Society and is featured in the current edition of the prestigious scientific journal Nature Chemistry.
"While most people consume wine, berries and chocolate for an antioxidant boost, we turned on our computers! We were able to use supercomputers to improve the power of natural antioxidants, which may provide future benefit to the health industry," said Dr Karton.
Antioxidants work by scavenging free radicals and other oxidative species, preventing them from causing damage to the body's tissues and organs. In this research the team, working alongside Professor Michael Davies and Dr David Pattison from the Heart Research Institute, studied a particular type of antioxidant found in meat, fish and eggs called carnosine, and investigated its effectiveness in scavenging the oxidant, hypochlorous acid.
Hypochlorous acid can benefit the body when it is used as part of our immune system to fight off invading pathogens. However, excessive levels of hypochlorous acid in the wrong place or at the wrong time have been linked to the development of heart disease.
"The supercomputer modelling allows us to probe deeply into the molecular structure and helps us understand why carnosine is such an effective antioxidant. Armed with this understanding, we can design even better antioxidants," said Professor Radom.
The findings of this research have led to several recommendations on how to improve the antioxidant capacity of particular molecules and,  ultimately how to custom design antioxidants for specific purposes in the fight against ageing-related diseases.
"Although we can't yet claim to have uncovered the fountain of eternal youth, our findings are one more step towards better treatments for ageing-related disease, which we hope will improve longevity and the quality of life in the future," said Dr Karton.
Editor's Note: Original news release can be found here.

No comments:

Post a Comment