The University of Sydney |
The existence of the planet, Kepler-37b, the innermost of three planets that orbit the sun-like host star, Kepler-37, is announced in the journal Nature. The University of Sydney's Professor Tim Bedding, Head of the School of Physics, and Dr Dennis Stello, an Australian Research Fellow in the School, contributed to the discovery effort of an international team. "That we have found one of these small and hard-to-detect planets suggests that they are abundant around other stars and lends weight to the belief that as planet size decreases their occurrence increases exponentially," said Dr Stello. Kepler-37b is an exoplanet, or planet located outside the solar system, and is estimated to be a similar size to Earth's moon, which is only 3475 kilometres in diameter. Owing to this extremely small size and its highly irradiated surface, Kepler-37b is believed to be a rocky planet with no atmosphere or water, similar to Mercury. The Kepler spacecraft made the Kepler-37b finding possible. The spacecraft was launched in 2009 with the goal of determining how often rocky planets occur in the habitable zone around sun-like host stars in our galaxy. Over 150,000 stars are continuously monitored for transits of planetary bodies. Over the course of 978 days of observations by the Kepler spacecraft, transit signals of three planets of the star Kepler-37, a slightly cooler and older star than our sun, were identified. "While theoretically such small planets are expected, detection of tiny planet Kepler-37b is remarkable given its transit signal is detectable on less than 0.5 percent of stars observed by Kepler," Professor Bedding said. "Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own, but it is only now, thanks to the precision of the Kepler space telescope that we have been able to find planets smaller than the ones we see in our own solar system." Professor Bedding and Dr Stello contributed to the analysis of Kepler-37, the star Kepler-37b orbits. "We analysed the frequencies of standing sound waves inside the star to tell its size in the same way that you could tell the difference in size of a violin and cello by the difference in the pitch of the sound they produce," said Dr Stello. This asteroseismic analysis showed that the radius of Kepler-37 is about 20 percent smaller than the sun. "Knowing this stellar radius is very important because the accuracy with which we can measure the radius of the planet Kepler-37b is limited by how accurately we can calculate the radius of Kepler-37," said Dr Stello. "Our work from here is to keep working with the planet team at NASA to make seismic analyses of planet-hosting stars, and there are some exciting results in the pipeline," said Dr Stello.
Editor's Note: Original news release can be found here.
|
A new airborne study with NASA contributions measured surprising levels of the potent greenhouse gas methane coming from cracks in Arctic sea ice and areas of partial sea ice cover. This image was taken over the Arctic Ocean at a latitude of approximately 71 degrees North on April 15, 2010. (Credit: NASA/JPL) Science Daily — The fragile and rapidly changing Arctic region is home to large reservoirs of methane, a potent greenhouse gas. As Earth's climate warms, the methane, frozen in reservoirs stored in Arctic tundra soils or marine sediments, is vulnerable to being released into the atmosphere, where it can add to global warming. Now a multi-institutional study by Eric Kort of NASA's Jet Propulsion Laboratory, Pasadena, Calif., has uncovered a surprising and potentially important new source of Arctic methane: the ocean itself.
Kort, a JPL postdoctoral scholar affiliated with the Keck Institute of Space Studies at the California Institute of Technology in Pasadena, led the analysis while he was a student at Harvard University, Cambridge, Mass. The study was conducted as part of the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaign, which flew a specially instrumented National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V aircraft over the Pacific Ocean from nearly pole to pole, collecting atmospheric measurements from Earth's surface to an altitude of 8.7 miles (14 kilometers). The campaign, primarily funded by NSF with additional funding from NCAR, NASA and the National Oceanic and Atmospheric Administration, was designed to improve our understanding of where greenhouse gases are originating and being stored in the Earth system.
During five HIPPO flights over the Arctic from 2009 to 2010, Kort's team observed increased methane levels while flying at low altitudes over the remote Arctic Ocean, north of the Chukchi and Beaufort Seas. The methane level was about one-half percent larger than normal background levels.
But where was the methane coming from? The team detected no carbon monoxide in the atmosphere that would point to possible contributions from human combustion activities. In addition, based on the time of year, location and nature of the emissions, it was extremely unlikely the methane was coming from high-latitude wetlands or geologic reservoirs.
By comparing locations of the enhanced methane levels with airborne measurements of carbon monoxide, water vapor and ozone, they pinpointed a source: the ocean surface, through cracks in Arctic sea ice and areas of partial sea ice cover. The cracks expose open Arctic seawater, allowing the ocean to interact with the air, and methane in the surface waters to escape into the atmosphere. The team detected no enhanced methane levels when flying over areas of solid ice.
Kort said previous studies by others had measured high concentrations of methane in Arctic surface waters, but before now no one had predicted that these enhanced levels of ocean methane would find their way to the overlying atmosphere.
So how is the methane being produced? The scientists aren't yet sure, but Kort hinted biological production from living things in Arctic surface waters may be a likely culprit. "It's possible that as large areas of sea ice melt and expose more ocean water, methane production may increase, leading to larger methane emissions," he said. He said future studies will be needed to understand the enhanced methane levels and associated emission processes and to measure their total contribution to overall Arctic methane levels.
"While the methane levels we detected weren't particularly large, the potential source region, the Arctic Ocean, is vast, so our finding could represent a noticeable new global source of methane," he added. "As Arctic sea ice cover continues to decline in a warming climate, this source of methane may well increase. It's important that we recognize the potential contribution from this source of methane to avoid falsely interpreting any changes observed in Arctic methane levels in the future."
The study, published April 22 in Nature Geoscience, included participation from JPL and Caltech; NSF, Arlington, Va.; NOAA's Earth System Research Laboratory, Boulder, Colo.; the University of Colorado's Cooperative Institute for Research in Environmental Sciences, Boulder; Harvard University, Cambridge, Mass.; Princeton University, Princeton, New Jersey; Universidad Nacional de Colombia, Bogota, Colombia; and Science and Technology Corporation, Boulder, Colo. JPL is a division of Caltech.