Multimedia
Creating a Heart
- May/June 2008
- By Amanda Schaffer
An ingenious method for making new organs could one day revolutionize medical transplants.
In Doris Taylor's cell- and molecular-biology lab at the University of Minnesota, a small pink heart beats in a glass chamber amid a complex of tubes. With each twitch, the heart's bottom tip traces a small curve in space, and pink nutrient solution flows out through the aorta. Remarkably, this living heart was grown in the lab.
Taylor directs the university's Center for Cardiovascular Repair, where her team has created bioartificial hearts using a novel approach in which animal hearts act as scaffolds. The researchers begin with a rat or pig heart and chemically wash away its cells. What remains is the extracellular matrix, a complex of carbohydrates and proteins that preserves the intricate structure of chambers, valves, and blood vessels. The researchers add heart cells harvested from a newborn animal and incubate the organ in a bioreactor, which provides physiological cues like pressure and electrical stimulation. Soon, the heart begins to beat weakly on its own.
Taylor directs the university's Center for Cardiovascular Repair, where her team has created bioartificial hearts using a novel approach in which animal hearts act as scaffolds. The researchers begin with a rat or pig heart and chemically wash away its cells. What remains is the extracellular matrix, a complex of carbohydrates and proteins that preserves the intricate structure of chambers, valves, and blood vessels. The researchers add heart cells harvested from a newborn animal and incubate the organ in a bioreactor, which provides physiological cues like pressure and electrical stimulation. Soon, the heart begins to beat weakly on its own.
No comments:
Post a Comment