Search This Blog

Thursday, May 26, 2011

Robots invent own language

Robots invent own language
The University of Queensland

“If they encounter an area that has not yet been named, one will invent a word, such as “kuzo”.
Image: Ruth Schulz/iStockphoto
University of Queensland (UQ) postdoctoral research fellow Dr Ruth Schulz and her colleagues have created a pair of robots that have their own language.

The ‘Lingodroids' are a pair of mobile robots that communicate by developing their own words for places, and relationships between places based on distance and direction.

The language sounds like a sequence of phone tones, which are easy for the robots to produce and hear in a noisy office environment, before being translated into syllables to make it easy for humans to recognise them.

Dr Schulz said that the robots start by playing where-are-we games.

“If they encounter an area that has not yet been named, one will invent a word, such as “kuzo”, choosing a random combination of syllables, which it is then able to communicate to other robots it meets, thus defining the name of the place,” she said.

“These words are known as “toponyms” (“topo” meaning place and “nym” meaning name).

“The robots then start to play how-far and which-direction games, which enable them to develop relationship words (like English prepositions).”

The resulting language consists of location, distance and direction words, enabling the robots to refer to new places based on their relationship to known locations.

“These languages are very powerful – they are known as “generative” languages because they enable the robots to refer to places they haven't been to or even places that they imagine beyond the edges of their explored world,” Dr Schulz said.

An essential aspect of these games is that the robots develop robust ideas of where a word should be used.

Their understanding of the new language was tested using games in which two robots attempted to meet at a particular toponym, or place name.

If one robot told the other “jaya”, they would independently navigate to where they thought “jaya” was.

When both robots arrived at the same location, the concept “jaya” was consistent between the robots.

After having played hundreds of games to develop their language, the robots agreed upon concepts for toponyms within 0.65 metres, directions within 10 degrees and distances within 0.375 metres.

The robots consist of a mobile platform which is fitted with a camera, laser range finder, sonar for mapping and obstacle avoidance, and a microphone and speakers for audible communication with each other.

Dr Schulz and her colleagues presented their research at the International Conference on Robotics and Automation in Shanghai on Tuesday, May 10, and have since received international coverage.

“We believe that the natural way to communicate with robots will be through human language,” Dr Schulz said.

“The Lingodroids have developed their own proto-language as part of realising this ambition,” she said.

“In the future, our aim is to extend the types of concepts able to be formed by the robots, as well as expand to additional grammatical features of language and to human-robot interaction.”

No comments:

Post a Comment