Leonardo da Vinci once said “The power of water has changed more in this world than emperors or kings”. It was very rightly stated by him as in present time Hydropower, the power generated from water, has a major contribution to the world’s total power production. This all was made possible by the development of Hydraulic Turbines which can transfer the energy from flowing water to the shafts of dynamos producing electrical power.
Hydraulic Turbines
Hydraulic Turbines have a row of blades fitted to the rotating shaft or a rotating plate. Flowing liquid, mostly water, when pass through the Hydraulic Turbine it strikes the blades of the turbine and makes the shaft rotate. While flowing through the Hydraulic Turbine the velocity and pressure of the liquid reduce, these result in the development of torque and rotation of the turbine shaft. There are different forms of Hydraulic Turbines in use depending on the operational requirements. For every specific use a particular type of Hydraulic Turbine provides the optimum output.
Classification of Hydraulic Turbines: Based on flow path
Water can pass through the Hydraulic Turbines in different flow paths. Based on the flow path of the liquid Hydraulic Turbines can be categorized into three types.
- Axial Flow Hydraulic Turbines: This category of Hydraulic Turbines has the flow path of the liquid mainly parallel to the axis of rotation. Kaplan Turbines has liquid flow mainly in axial direction.
- Radial Flow Hydraulic Turbines: Such Hydraulic Turbines has the liquid flowing mainly in a plane perpendicular to the axis of rotation.
- Mixed Flow Hydraulic Turbines: For most of the Hydraulic Turbines used there is a significant component of both axial and radial flows. Such types of Hydraulic Turbines are called as Mixed Flow Turbines. Francis Turbine is an example of mixed flow type, in Francis Turbine water enters in radial direction and exits in axial direction.
None of the Hydraulic Turbines are purely axial flow or purely radial flow. There is always a component of radial flow in axial flow turbines and of axial flow in radial flow turbines.
Classification of Hydraulic Turbines: Based on pressure change
One more important criterion for classification of Hydraulic Turbines is whether the pressure of liquid changes or not while it flows through the rotor of the Hydraulic Turbines. Based on the pressure change Hydraulic Turbines can be classified as of two types.
- Impulse Turbine: The pressure of liquid does not change while flowing through the rotor of the machine. In Impulse Turbines pressure change occur only in the nozzles of the machine. One such example of impulse turbine is Pelton Wheel.
- Reaction Turbine: The pressure of liquid changes while it flows through the rotor of the machine. The change in fluid velocity and reduction in its pressure causes a reaction on the turbine blades; this is where from the name Reaction Turbine may have been derived. Francis and Kaplan Turbines fall in the category of Reaction Turbines.
Hydraulic Turbines
- 1. Hydraulic Turbines: The Pelton Turbine
- 2. Hydraulic Turbines: Francis Turbine
- 3. Hydraulic Turbines: Kaplan Turbine
Hydraulic Turbines are being used from very ancient times to harness the energy stored in flowing streams, rivers and lakes. The oldest and the simplest form of a Hydraulic Turbine was the Waterwheel used for grinding grains. Different types of Hydraulic Turbines were developed with the increasing need for power. Three major types are Pelton Wheel, Francis and Kaplan Turbine.
Design of Pelton Wheel Turbine
The Pelton Turbine has a circular disk mounted on the rotating shaft or rotor. This circular disk has cup shaped blades, called as buckets, placed at equal spacing around its circumference. Nozzles are arranged around the wheel such that the water jet emerging from a nozzle is tangential to the circumference of the wheel of Pelton Turbine. According to the available water head (pressure of water) and the operating requirements the shape and number of nozzles placed around the Pelton Wheel can vary.
Working Principle of Pelton Turbine
The high speed water jets emerging form the nozzles strike the buckets at splitters, placed at the middle of a bucket, from where jets are divided into two equal streams. These stream flow along the inner curve of the bucket and leave it in the direction opposite to that of incoming jet. The high speed water jets running the Pelton Wheel Turbine are obtained by expanding the high pressure water through nozzles to the atmospheric pressure. The high pressure water can be obtained from any water body situated at some height or streams of water flowing down the hills.
The change in momentum (direction as well as speed) of water stream produces an impulse on the blades of the wheel of Pelton Turbine. This impulse generates the torque and rotation in the shaft of Pelton Turbine. To obtain the optimum output from the Pelton Turbine the impulse received by the blades should be maximum. For that, change in momentum of the water stream should be maximum possible. That is obtained when the water stream is deflected in the direction opposite to which it strikes the buckets and with the same speed relative to the buckets.
The change in momentum (direction as well as speed) of water stream produces an impulse on the blades of the wheel of Pelton Turbine. This impulse generates the torque and rotation in the shaft of Pelton Turbine. To obtain the optimum output from the Pelton Turbine the impulse received by the blades should be maximum. For that, change in momentum of the water stream should be maximum possible. That is obtained when the water stream is deflected in the direction opposite to which it strikes the buckets and with the same speed relative to the buckets.
Pelton Turbine Hydroelectric Setup
A typical setup of a system generating electricity by using Pelton Turbine will have a water reservoir situated at a height from the Pelton Wheel. The water from the reservoir flows through a pressure channel to the penstock head and then through the penstock or the supply pipeline to the nozzles, from where the water comes out as high speed jets striking the blades of the Pelton Turbine. The penstock head is fitted with a surge tank which absorbs and dissipates sudden fluctuations in pressure.
For a constant water flow rate from the nozzles the speed of turbine changes with changing loads on it. For quality hydroelectricity generation the turbine should rotate at a constant speed. To keep the speed constant despite the changing loads on the turbine water flow rate through the nozzles is changed. To control the gradual changes in load servo controlled spear valves are used in the jets to change the flow rate. And for sudden reduction in load the jets are deflected using deflector plates so that some of the water from the jets do not strike the blades. This prevents over speeding of the turbine.
For a constant water flow rate from the nozzles the speed of turbine changes with changing loads on it. For quality hydroelectricity generation the turbine should rotate at a constant speed. To keep the speed constant despite the changing loads on the turbine water flow rate through the nozzles is changed. To control the gradual changes in load servo controlled spear valves are used in the jets to change the flow rate. And for sudden reduction in load the jets are deflected using deflector plates so that some of the water from the jets do not strike the blades. This prevents over speeding of the turbine.
Francis Turbine is the first hydraulic turbine with radial inflow. It was designed by American scientist James Francis. Francis Turbine is a reaction turbine. Reaction Turbines have some primary features which differentiate them from Impulse Turbines. The major part of pressure drop occurs in the turbine itself, unlike the impulse turbine where complete pressure drop takes place up to the entry point and the turbine passage is completely filled by the water flow during the operation.
Design of Francis Turbine
Francis Turbine has a circular plate fixed to the rotating shaft perpendicular to its surface and passing through its center. This circular plate has curved channels on it; the plate with channels is collectively called as runner. The runner is encircled by a ring of stationary channels called as guide vanes. Guide vanes are housed in a spiral casing called as volute. The exit of the Francis turbine is at the center of the runner plate. There is a draft tube attached to the central exit of the runner. The design parameters such as, radius of the runner, curvature of channel, angle of vanes and the size of the turbine as whole depend on the available head and type of application altogether.
Working of Francis Turbine
Francis Turbines are generally installed with their axis vertical. Water with high head (pressure) enters the turbine through the spiral casing surrounding the guide vanes. The water looses a part of its pressure in the volute (spiral casing) to maintain its speed. Then water passes through guide vanes where it is directed to strike the blades on the runner at optimum angles. As the water flows through the runner its pressure and angular momentum reduces. This reduction imparts reaction on the runner and power is transferred to the turbine shaft.
If the turbine is operating at the design conditions the water leaves the runner in axial direction. Water exits the turbine through the draft tube, which acts as a diffuser and reduces the exit velocity of the flow to recover maximum energy from the flowing water.
If the turbine is operating at the design conditions the water leaves the runner in axial direction. Water exits the turbine through the draft tube, which acts as a diffuser and reduces the exit velocity of the flow to recover maximum energy from the flowing water.
Power Generation using Francis Turbine
For power generation using Francis Turbine the turbine is supplied with high pressure water which enters the turbine with radial inflow and leaves the turbine axially through the draft tube. The energy from water flow is transferred to the shaft of the turbine in form of torque and rotation. The turbine shaft is coupled with dynamos or alternators for power generation. For quality power generation speed of turbine should be maintained constant despite the changing loads. To maintain the runner speed constant even in reduced load condition the water flow rate is reduced by changing the guide vanes angle.
Most of the turbines developed earlier were suitable for large heads of water. With increasing demand of power need was felt to harness power from sources of low head water, such as, rivers flowing at low heights. For such low head applications Viktor Kaplan designed a turbine similar to the propellers of ships. Its working is just reverse to that of propellers. The Kaplan Turbine is also called as Propeller Turbine.
Design of Kaplan Turbine
To generate substantial amount of power from small heads of water using Kaplan Turbine it is necessary to have large flow rates through the turbine. Kaplan Turbine is designed to accommodate the required large flow rates. Except the alignment of the blades the construction of the Kaplan Turbine is very much similar to that of the Francis Turbine. The overall path of flow of water through the Kaplan Turbine is from radial at the entrance to axial at the exit. Similar to the Francis Turbine, Kaplan Turbine also has a ring of fixed guide vanes at the inlet to the turbine.
Unlike the Francis Turbine which has guide vanes at the periphery of the turbine rotor (called as runner in the case of Francis Turbine), there is a passage between the guide vanes and the rotor of the Kaplan Turbine. The shape of the passage is such that the flow which enters the passage in the radial direction is forced to flow in axial direction. The rotor of the Kaplan Turbine is similar to the propeller of a ship. The rotor blades are attached to the central shaft of the turbine. The blades are connected to the shaft with moveable joints such that the blades can be swiveled according to the flow rate and water head available.
The blades of the Kaplan Turbine are not planer as any other axial flow turbine; instead they are designed with twist along the length so as to allow swirling flow at entry and axial flow at exit.
Working of the Kaplan Turbine
The working head of water is low so large flow rates are allowed in the Kaplan Turbine. The water enters the turbine through the guide vanes which are aligned such as to give the flow a suitable degree of swirl determined according to the rotor of the turbine. The flow from guide vanes pass through the curved passage which forces the radial flow to axial direction with the initial swirl imparted by the inlet guide vanes which is now in the form of free vortex.
The axial flow of water with a component of swirl applies force on the blades of the rotor and looses its momentum, both linear and angular, producing torque and rotation (their product is power) in the shaft. The scheme for production of hydroelectricity by Kaplan Turbine is same as that for Francis Turbine.
The axial flow of water with a component of swirl applies force on the blades of the rotor and looses its momentum, both linear and angular, producing torque and rotation (their product is power) in the shaft. The scheme for production of hydroelectricity by Kaplan Turbine is same as that for Francis Turbine.
No comments:
Post a Comment