What is the role played by information theory in biology? Is evolution driven by information? As it happens with physics, information is becoming more central to our understanding ecological complexity. A great review of ideas is here:https://bit.ly/2LjDBMk v/@ricard_sole
Communication is an important feature of the living world that mainstream biology fails to adequately deal with. Applying two main disciplines can be contemplated to fill in this gap: semiotics and information theory. Semiotics is a philosophical discipline mainly concerned with meaning; applying it to life already originated in biosemiotics. Information theory is a mathematical discipline coming from engineering which has literal communication as purpose. Biosemiotics and information theory are thus concerned with distinct and complementary possible meanings of the word ‘communication’. Since literal communication needs to be secured so as to enable semantics being communicated, information theory is a necessary prerequisite to biosemiotics. Moreover, heredity is a purely literal communication process of capital importance fully relevant to literal communication, hence to information theory. A short introduction to discrete information theory is proposed, which is centred on the concept of redundancy and its use in order to make sequences resilient to errors. Information theory has been an extremely active and fruitful domain of researches and the motor of the tremendous progress of communication engineering in the last decades. Its possible connections with semantics and linguistics are briefly considered. Its applications to biology are suggested especially as regards error-correcting codes which are mandatory for securing the conservation of genomes. Biology needs information theory so biologists and communication engineers should closely collaborate.
No comments:
Post a Comment