Search This Blog

Monday, May 9, 2011

GE and EADS to Print Parts for Airplanes

Energy

GE and EADS to Print Parts for Airplanes

The technology could be used to make parts that perform better and cost less.

GE is starting a new lab at its global research headquarters in Niskayuna, New York, that's devoted to turning three-dimensional printing technology into a viable means of manufacturing functional parts for a range of its businesses, including those involving health care and aerospace. The company aims to take advantage of the technology's potential to make parts that are lighter, perform better, and cost less than parts made with conventional manufacturing techniques.
Technology for printing three-dimensional objects has existed for decades, but its applications have been largely limited to novelty items and specialized custom fabrication, such as the making of personalized prosthetics. But  the technology has now improved to the point that these printers can make intricate objects out of durable materials , including ceramics and metals such as titanium and aluminum,  with resolution on the scale of tens of micrometers.
As a result, companies such as GE and the European defense and aerospace giant EADS are working to apply it in situations more akin to conventional manufacturing, where large numbers of the same part are needed.
GE's first application of the technology could be ultrasound machines that are cheaper and perform better than current versions. One of the most expensive parts of an ultrasound machine is the device that transforms electronic signals into sound and back again—the part that's pressed against a person's skin during an ultrasound. These transducers are made up of thousands of tiny columns spaced just 30 to 40 micrometers apart, with each column being extremely thin, about eight to 10 times taller than they are wide. It's extremely difficult to make such parts using casting, since it's hard to free the part from the mold. So GE makes them using a precise cutting tool that very slowly carves away at a chunk of ceramic. The process is slow and expensive and can only be used to make a limited range of shapes.


Now GE has developed a new printing technology that spreads out a thin layer of a slurry composed of ceramic embedded in a polymer precursor. When a pattern of ultraviolet light is projected on this layer, the material solidifies only where it's been exposed to the light. Another layer of slurry is spread out on top of this and flashed with light, and the structure is built up in this way, layer by layer.
The process is still not ready for mass production, says Prabhjot Singh, a mechanical engineer and project manager at GE Research. But because the process is faster and saves material, "it could achieve orders of magnitude reduction in cost," he says. GE designers using the new process could improve the performance of the transducer because they won't be as constrained in the types of shapes they can make. This could lead to higher resolution ultrasounds.

No comments:

Post a Comment