Search This Blog

Sunday, April 3, 2016

Robots record brain activity inside neurons




Neuroscientists hope to turn the delicate art of eavesdropping on brain cells into an automated technique.
Clamping an electrode to the brain cell of a living animal to record its electrical chatter is a task that demands finesse and patience.
Known as ‘whole-cell patch-clamping’, it is reputedly the “finest art in neuroscience”, says neurobiologist Edward Boyden, and one that only a few dozen laboratories around the world specialize in.
But researchers are trying to demystify this art by turning it into a streamlined, automated technique that any laboratory could attempt, using robotics and downloadable source code.
“Patch-clamping provides a unique view into neural circuits, and it’s a very exciting technique but is really underused,” says neuroscientist Karel Svoboda at the Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn, Virginia. “That’s why automation is a really, really exciting direction.”
On 3 March, Boyden, at the Massachusetts Institute of Technology in Cambridge, and his colleagues published detailed instructions on how to assemble and operate an automated system for whole-cell patch-clamping1, a concept that they first described in 20122. The guide represents the latest fruits of Boyden’s partnership with the laboratory of Craig Forest, a mechanical engineer at the Georgia Institute of Technology in Atlanta who specializes in robotic automation for research.

Most neural recordings involve inserting an electrode in the space between cells to pick up electrical volleys between neurons. Such ‘extracellular recording’ detects outgoing signals but misses the electrical activity inside the cells that determines whether they will fire. This is where whole-cell patch-clamping comes in, a technique that can tap into a neuron’s innards. The delicate procedure “has a very steep learning curve, and even then some people never really get it to work”, says Svoboda.
Whole-cell patch-clamping involves pushing a tiny glass pipette containing a wire electrode through the brain. In the most common, ‘blind’ version, researchers do this without being able to see the neurons. The scientist must continually apply pressure to push brain matter away from the pipette, but when a rise in electrode resistance indicates that a cell is nearby, they must switch to suction at just the right moment to seal a tiny patch of the neuron’s membrane against the pipette’s super-thin tip. With an additional burst of suction, the researcher can then make a tiny hole in the cell membrane to record the neuron’s activity. Hitting the neuron at the wrong angle, misregulating the pressure and numerous other variables often derail recordings.
“Every step has a certain failure rate, and these multiply throughout the process,” says Boyden. Experienced practitioners report success rates of between 20% and 60%.
Boyden and Forest decided to automate this tricky technique. Their robot does not outperform human experts yet, but its average success rate is around 33% in tests on mice. The device, which runs on the commercial programming platform LabVIEW, only requires researchers to position the animal and the pipette. A computer algorithm then controls the pipette’s internal pressure and its progression through the brain. A company called Neuromatic Devices in Atlanta, Georgia, offers machines based on Boyden and Forest’s technology, but did not disclose pricing or sales figures to Nature.
At the University of Texas at Austin, researchers have created a similar auto-patching system that is controlled in the MATLAB computing environment. This system uses a slightly different algorithm to decide when to start suctioning, and it succeeds in patch-clamping cells in mice about 17% of the time3. Neuroscientist Niraj Desai, who led the team, says that he hopes to incorporate more-sophisticated algorithms.
Some researchers question whether the recording robots will ever surpass the best human experts. “The elements that go into the human’s decisions may be richer than can be captured by the machine,” says neuroscientist Michael Hausser at University College London. But he adds that the technologies could still be a huge boon to novices. Others suggest that the robots could help users of all skill levels in lengthy or complex experiments, in which human fatigue becomes a limiting factor.
At the Allen Institute for Brain Science in Seattle, Washington, researchers have developed an automated system to assist in the even more challenging ‘image-guided’ variant of the technique. In this version, instead of blindly bumping into neurons with a pipette, scientists target specific neurons near the brain’s surface using a two-photon microscope. The procedure requires more coordination than blind patch-clamping because the scientist must constantly focus the microscope in addition to guiding the pipette and adjusting its internal pressure. “This is a technique that ideally would benefit from having three hands,” says Hausser, an expert in image-guided patching.
The automated system constructs 3D images of the brain region of interest and allows users to digitally select the neuron that they want to record. Then, with the coordinates locked in, the device navigates the pipette into place. For now, researchers still need to patch onto the cell by hand, but Allen Institute neuroscientist and joint team leader Lu Li says that eventually they hope to fully automate the procedure.
Whether these automation systems will be taken up widely by the neuroscience community remains to be seen. Each of the teams has made their code freely available for people to download: Boyden’s group at autopatcher.org; Desai’s team at clm.utexas.edu/robotpatch; and Li’s team at the GitHub repository (go.nature.com/sgjpab). “Our hope is that we can help as many people as possible to answer questions about how neurons compute,” Boyden says.
http://www.nature.com/…/robots-record-brain-activity-inside…
http://www.nature.com/…/injectable-brain-implant-spies-on-i…
http://www.nature.com/…/robots-hunt-neurons-to-record-brain…
https://en.wikipedia.org/wiki/Patch_clamp
http://sites.sinauer.com/neuroscience5e/animations04.01.html
thanks 
Cecile G. Tamura

Irudhi Suttru Tamil Movie | Boxing Scenes | R Madhavan | Ritika Singh | ...

அப்துல் கலாம் ஐயாவின் யாரும் கண்டிராத அரிய புகைப்படம் !!



Big imperial crown of the Romanov dynasty. Russia


Roman ruins in the light of the Milky Way





Saturday, April 2, 2016

Inside Engine View


‪திருநீறு‬ ‪இட்டுக்கொள்ளும்‬ ‪இடங்கள்‬

1. புருவ மத்தியில்(ஆக்ஞா சக்கரம்) வாழ்வின் ஞானத்தை ஈர்த்துக் கொள்ளலாம்.
2.தொண்டைக்குழி(விசுத்தி சக்கரம்) நமது சக்தியை அதிகரித்துக் கொள்ளலாம்.
3.நெஞ்சுக்கூட்டின் மையப்பகுதி தெய்வீக அன்பைப் பெறலாம். மேலும், பூதியை எடுக்கும் போது, மோதிரவிரலால் எடுப்பது மிகவும் சிறந்தது. ஏனென்றால், நம் உடலிலேயே மிகவும் பவித்ரமான பாகம் என்று அதைச் சொல்லலாம். நம் வாழ்வையே கட்டுப்படுத்தும் சூட்சுமம் அங்கு உள்ளது.
4.திருநீறு அணிவதால் தடையற்ற இறைச் சிந்தனை, உயர்ந்த நற்குணங்கள், குறைவற்ற செல்வம், நல்வாக்கு, நல்லோர் நட்பு போன்ற எல்லா நலமும் பெற்று சிறப்புடன் வாழலாம்.
திருநீறை (விபூதி) மூன்று கோடுகளாக போடுவதன் தத்துவம்;-
மும்மலங்கலான ஆணவம் கன்மம் மாயை மூன்றையும் ஞானத்தினால் சுட்டெரித்து
நிர்மல நிலையினை அடைந்தவர் என்பதன் வெளிப்பாடாக மூன்று கோடுகள் போடப் படுகின்றன. மேலும் சூரிய கலை சந்திர கலை அக்னி கலை மூன்றையும் கடந்து மூச்சற்ற சுத்த நிலையினில் அருள் அனுபவம் பெற்றவர் என்பதையும் உணர்த்தும்.

In search of Ramanujan movie

Film: 

Andrew Robinson marvels afresh at the self-taught mathematical genius in a new biopic.
The story of the Indian mathematician Srinivasa Ramanujan (1887–1920) is improbable. Self-taught, he made many seminal discoveries in number theory and power series — most famously concerning the partition of numbers into a sum of smaller integers — that continue to fascinate mathematicians and intrigue physicists studying black holes and quantum gravity.
In The Man Who Knew Infinity, director Matthew Brown dramatizes the purest of mathematics for a general audience, and explores the strange personal life of Ramanujan, who died at 32, at the height of his powers, probably from tuberculosis. Based on the compelling biography of the same name by Robert Kanigel (Scribner, 1991), the film took more than ten years to create. It is worth the wait.

Ramanujan's career was 'made' by British mathematician G. H. Hardy, a fellow of Trinity College, Cambridge. In 1913, while working as an accounts clerk in what is now Chennai, Ramanujan sent Hardy startling, entirely unproven, theorems out of the blue. “They must be true,” wrote Hardy, “because, if they were not true, no one would have the imagination to invent them.” Hardy lured Ramanujan to Cambridge, even though foreign travel was considered an offence against Hindu caste purity.
They collaborated intensively throughout the First World War. Ramanujan had no university degree, but in 1918, Hardy ensured that he was elected a fellow of the Royal Society — the first Indian to receive the honour after it was restricted to scientists — and of Trinity College. They encountered considerable opposition, some of it racially motivated.
Hardy's relationship with Ramanujan holds the film together. Convincing performances by Jeremy Irons as Hardy and Dev Patel as Ramanujan were carefully refined by the film's Japanese–American mathematics adviser, Ken Ono, whose academic career has been dedicated to exploring Ramanujan's theorems. Irons and Patel animate both the consuming passion for mathematics shared by the two, and their astonishing lack of personal intimacy; Hardy, for instance, had only a faint idea of Ramanujan's growing depression, which led to a suicide attempt on the London
Underground.
Irons, however brilliant, is a generation older than Hardy was in 1914, and Patel is taller and nattier than the more corpulent Ramanujan, who was ill at ease in Western dress.
Much of the action — and mathematics — takes place in the handsome precincts of Trinity College, which opened its doors to a feature film for the first time. In Hardy's room and the quadrangles, Ramanujan persistently resists Hardy's demands for proofs of his tantalizing theorems. An excited Ramanujan infuriates a lecturer by failing to take notes and then quickly chalking a correct formula: a very special integral due to Carl Friedrich Gauss, which Ramanujan knew through a method of his own devising. And in an evocative scene in Trinity's Wren Library, the famously atheistic Hardy tells his Indian protégé that the greatest honour “is to have a legacy at Wren once we are gone. In this very library are the Epistles of St Paul, the poems of Milton, Morgan's Bible and, in my estimation as a man of numbers, the pièce de résistance, Newton's Principia Mathematica.”
Ramanujan's 'lost notebook' — which contains important mathematical discoveries made in India in 1919–20 and was neglected until 1976 — is, fittingly, in the Wren Library.
Scenes in India are no less ravishing. We see Ramanujan in flowing Indian clothes with Brahminical caste marks, chalking endless equations on the floors of a highly decorated Hindu temple. His dominating mother Komalatammal and wife Janaki provide a glimpse of domestic life. Indian and British colonial figures come and go (with a cameo by Ramanujan admirer Stephen Fry). But the film struggles to shed light on the origins of Ramanujan's prodigious gift. Biographers have had the same problem with Gauss and many other mathematicians. As India's great film director Satyajit Ray put it: “This whole business of creation, of the ideas that come in a flash, cannot be explained by science.”
Hardy, too, was dazzled and puzzled. On a 0–100 scale of natural mathematical ability, he gave himself a score of 25 and Trinity colleague John Littlewood (a fellow supporter of Ramanujan) 30, compared with 80 for influential mathematician David Hilbert and 100 for Ramanujan. “The limitations of his knowledge were as startling as its profundity,” Hardy wrote after Ramanujan's death. “All his results, new or old, right or wrong, had been arrived at by a process of mingled argument, intuition and induction, of which he was entirely unable to give any coherent account.”
Ramanujan has inspired many. Christopher Sykes's pioneering UK television documentary, Letters from an Indian Clerk, was screened in 1987. The play A Disappearing Number, devised by Théâtre de Complicité, was produced in Britain in 2007 (see Nature 449, 25–26; 2007). A biographical novel by David Leavitt, The Indian Clerk (Bloomsbury), was published in 2007.

Now, the film has spawned an intriguing, moving autobiography by Ono, My Search for Ramanujan (Springer, 2016), written with science writer Amir Aczel, who died before publication. Ono interweaves Ramanujan's life and work with his own fight to become a mathematician — including a suicide attempt — in the shadow of his distinguished mathematician father, Takashi Ono. After years of estrangement, the Onos realized that they were united by admiration and affection for the university drop-out Ramanujan.

Here is yet another example of how this enigmatic Indian's unique achievements continue to reverberate nearly a century after his death.


https://plus.maths.org/content/disappearing-number
http://www.amazon.co.uk/Mathematicians-Apolog…/…/ref=sr_1_1…

Artificial molecules


A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres. The researchers would like to one day use such tiny objects in micro-robots, for photonics and basic biochemical research.

Scientists at ETH Zurich and IBM Research Zurich have developed a new technique that enables for the first time the manufacture of complexly structured tiny objects joining together microspheres. The objects have a size of just a few micrometres and are produced in a modular fashion, making it possible to program their design in such a way that each component exhibits different physical properties.
After fabrication, it is also very simple to bring the micro-objects into solution. This makes the new technique substantially different from micro 3D printing technology. With most of today's micro 3D printing technologies, objects can only be manufactured if they consist of a single material, have a uniform structure and are attached to a surface during production.
To prepare the micro-objects, the ETH and IBM researchers use tiny spheres made from a polymer or silica as their building blocks, each with a diameter of approximately one micrometre and different physical properties. The scientists are able to control the particles and arrange them in the geometry and sequence they like.
The structures that are formed occupy an interesting niche in the size scale: they are much larger than your typical chemical or biochemical molecules, but much smaller than typical objects in the macroscopic world. "Depending on the perspective, it's possible to speak of giant molecules or micro-objects," says Lucio Isa, Professor for Interfaces, Soft matter and Assembly at ETH Zurich. He headed the research project together with Heiko Wolf, a scientist at IBM Research. "So far, no scientist has succeeded in fully controlling the sequence of individual components when producing artificial molecules on the micro scale," says Isa.
Diverse range of applications
With the new method, it is possible to manufacture micro-objects with precisely defined magnetic, non-magnetic and differently charged areas. Currently, the scientists can create small rods of varying lengths and composition, tiny triangles and basic three-dimensional objects. But the researchers are keen to develop the technique further. As possible future applications, they are considering self-propelled micro-carriers that move in an external electric field thanks to their sophisticated geometry and material composition.
Other possibilities include micro-mixers for lab-on-a-chip applications or, in the distant future, even micro-robots for biomedical applications which can grab, transport and release other specific micro-objects. Additionally, the researchers could design their artificial molecules so that they interact with each other and assemble together independently into larger 'superstructures'. This would be for instance relevant for photonics (light-based signal processing). "Customised micro-structures are required in photonics. These could one day be manufactured with our components," says Isa.
Production with micro-templates
To manufacture a large number of identical micro-objects at the same time, the scientists use polymer templates with indentations engraved in the form of the object they want to produce. The researchers developed a method that allows them to deposit one tiny sphere at a time during each step of the procedure. They can build up larger objects sequentially, choosing the type of sphere for each step. At the end, they connect the tiny spheres together by briefly heating them.
In the current development phase, the tiny spheres are firmly connected to one another, but in the future, the researchers would like to try to connect them with 'soft bonds'. This would make it possible to use the objects as large-scale models for chemical and biochemical compounds, for instance to study protein folding on an experimental level. The researchers would also like to attempt to assemble the objects with tiny spheres made from materials other than plastic or silica. "In principle, our method can be adapted to any material, even metals," says Isa.
https://www.ethz.ch/…/news/2016/04/artificial-molecules.html
http://www.eurekalert.org/pub_relea…/2016-04/ez-am033116.php

Devastating impact of European colonisation on the Indigenous American populations

"The first largescale study of ancient DNA from early American people has confirmed the devastating impact of European colonisation on the Indigenous American populations of the time.

Led by the University of Adelaide's Australian Centre for Ancient DNA (ACAD), the researchers have reconstructed a genetic history of Indigenous American populations by looking directly into the DNA of 92 pre-Columbian mummies and skeletons, between 500 and 8600 years old."

போட்சுவானா

போட்ஸ்வானாக் குடியரசு முற்றிலும் பிறநாடுகளால் சூழப்பட்ட தென் ஆப்பிரிக்க நாடு. முன்னர் இந்த நாடு பிரித்தானியப் பாதுகாப்பில் இருந்த பகுதி. தென்கிழக்கிலும் தென் ஆப்பிரிக்காவும் மேற்கே நமிபியாவும், வடக்கே சாம்பியாவும், வடகிழக்கே சிம்பாப்வேயும் உள்ளது. இந்நாட்டின் பொருளியல் தென் ஆப்பிரிக்கவுடன் நெருங்கிய தொடர்பு கொண்டது.
போட்சுவானா தமிழர் எனப்படுவோர் இலங்கைத் இந்திய தமிழர்கள் தமிழ்ப் பின்புலத்துடன் போட்சுவானா நாட்டில் வசிப்பவர்கள் ஆவர். 20 ம் நூற்றாண்டில் தொடக்கத்தில் தென் ஆபிரிக்காவில் இருந்த இந்திய தமிழர்கள் போட்சுவானாவுக்கு வணிக நோக்கில் இடம்பெயர்ந்தனர். இங்கு வாழ்பவர்களில் பெரும்பான்மையானோர் இவர்களின் வழித்தோன்றல்கள் ஆவர். தொழில் வாய்ப்புக்கள் தேடி மிகவும் பின்னர் இடம்பெயர்ந்தோரும் உள்ளனர். போர்சூழல் காரணமாகவும் தொழில் ரீதியிலும் இலங்கைத் தமிழரகள் 1985க்கு பின் அங்கு குடியேறியுள்ளார்கள்










நிர்வாகத்துறை, தொழில்நுட்பம், மருத்துவம், பல்கலைக்கழகம், மற்றய துறைகளில் எல்லாம் மிகக்குறுகிய காலத்தில் இலங்கைத்தமிழர்கள் அதியுயர் பதவிகளில் இருக்கிறார்கள். கடந்த 3 வருடங்களாக நான் அந்நாட்டின் திட்டமிடல் அபிவிருத்தி ஆலோசகராக இருப்பதில் மகிழ்ச்சி.
பல தமிழ்ச்சங்கங்கள் இந்துக்கோவில்கள் அங்கு உண்டு, போட்சுவானா தமிழ் கலாச்சார கழகம் ஒன்றும் இங்கு இயங்குகிறது.
மொத்தம் 2 மில்லியன் மக்கள்தொகை, 5000 இந்தியத் தமிழரும், 2200 இலங்கைத் தமிழரும் அங்கு இருக்கிறார்கள். முக்கிய வியாபாரம் இரத்தனக்கற்கள்தான்.
அதிகூடிய விலங்குகளும் காடு சார்ந்த பிரதேசமும் இங்கு உண்டு. நான் பலநாடுகளில் பல்வேறு விலங்குகளை பார்த்திருக்கிறேன். ஆனால் இங்குள்ள விலங்குகள் பெரியதாகவும் உயரமானதாகவும் தோற்றமளிக்கும். இப்படி உயரமான யானைகளை நான் வேறு எந்த நாட்டிலும் பார்த்ததில்லை. யாழ்ப்பாணத்தில் உள்ளதைப் போன்று பனைமரங்கள் நிறைய உண்டு. கள்ளுத்தான் அவர்களது முக்கிய சோமபானம். விலங்குகள் கூட கள்ளருந்திவிட்டு மனிதனை விட மோசமாக அட்டகாசம் செய்யும்...
சில படங்கள் உங்கள் பார்வைக்கு!!!

Thursday, March 31, 2016

Acropolis... Athens... Greece... Just beautiful....


Biological mechanism passes on long-term epigenetic 'memories'


Tel Aviv University researchers discover the on/off button for inheriting responses to environmental changes



Researchers have been preoccupied with how the effects of stress, trauma, and other environmental exposures are passed from one generation to the next for years. Small RNA molecules — short sequences of RNA that regulate the expression of genes — are among the key factors involved in mediating this kind of inheritance.
According to epigenetics -- the study of inheritable changes in gene expression not directly coded in our DNA -- our life experiences may be passed on to our children and our children's children. Studies on survivors of traumatic events have suggested that exposure to stress may indeed have lasting effects on subsequent generations.
But how exactly are these genetic "memories" passed on?
A new Tel Aviv University study pinpoints the precise mechanism that turns the inheritance of environmental influences "on" and "off." The research, published last week in Cell and led by Dr. Oded Rechavi and his group from TAU's Faculty of Life Sciences and Sagol School of Neuroscience, reveals the rules that dictate which epigenetic responses will be inherited, and for how long.
"Until now, it has been assumed that a passive dilution or decay governs the inheritance of epigenetic responses," Dr. Rechavi said. "But we showed that there is an active process that regulates epigenetic inheritance down through generations."
Passing stress from one generation to the next
Researchers have been preoccupied with how the effects of stress, trauma, and other environmental exposures are passed from one generation to the next for years. Small RNA molecules -- short sequences of RNA that regulate the expression of genes -- are among the key factors involved in mediating this kind of inheritance. Dr. Rechavi and his team had previously identified a "small RNA inheritance" mechanism through which RNA molecules produced a response to the needs of specific cells and how they were regulated between generations.
"We previously showed that worms inherited small RNAs following the starvation and viral infections of their parents. These small RNAs helped prepare their offspring for similar hardships," Dr. Rechavi said. "We also identified a mechanism that amplified heritable small RNAs across generations, so the response was not diluted. We found that enzymes called RdRPs are required for re-creating new small RNAs to keep the response going in subsequent generations."
Most inheritable epigenetic responses in C.elegans worms were found to persist for only a few generations. This created the assumption that epigenetic effects simply "petered out" over time, through a process of dilution or decay.
"But this assumption ignored the possibility that this process doesn't simply die out but is regulated instead," said Dr. Rechavi, who in this study treated C.elegans worms with small RNAs that target the GFP (green fluorescent protein), a reporter gene commonly used in experiments. "By following heritable small RNAs that regulated GFP -- that 'silenced' its expression -- we revealed an active, tuneable inheritance mechanism that can be turned 'on' or 'off.'"
The scientists discovered that specific genes, which they named "MOTEK" (Modified Transgenerational Epigenetic Kinetics), were involved in turning on and off epigenetic transmissions.
"We discovered how to manipulate the transgenerational duration of epigenetic inheritance in worms by switching 'on' and 'off' the small RNAs that worms use to regulate genes," said Dr. Rechavi. "These switches are controlled by a feedback interaction between gene-regulating small RNAs, which are inheritable, and the MOTEK genes that are required to produce and transmit these small RNAs across generations.
"The feedback determines whether epigenetic memory will continue to the progeny or not, and how long each epigenetic response will last."
A comprehensive theory of heredity?
Although their research was conducted on worms, the team believes that understanding the principles that control the inheritance of epigenetic information is crucial for constructing a comprehensive theory of heredity for all organisms, humans included.
"We are now planning to study the MOTEK genes to know exactly how these genes affect the duration of epigenetic effects," said Leah Houri-Zeevi, a PhD student in Dr. Rechavi's lab and first author of the paper.
"Moreover, we are planning to examine whether similar mechanisms exist in humans."
http://www.eurekalert.org/pub_re…/2016-03/afot-bmp032816.php
https://www.sciencedaily.com/releas…/2016/…/160328133534.htm
http://www.cell.com/cell/pdf/S0092-8674(16)30207-0.pdf
http://neurosciencenews.com/epigenetics-environmental-infl…/

Syria,Turkey ,Egypt ,Cyprus, Greece


Wednesday, March 30, 2016

அன்பிருந்தால் வறுமையும் இனிமைதான்


This flexible material turns any surface into a solar panel


Satyendra Nath Bose




Indian physicist Satyendra Nath Bose is known for working with Albert Einstein on the Bose-Einstein Condensate and as namesake of the boson, or “God particle.”
Synopsis
Physicist Satyendra Nath Bose, born on January 1, 1894, in Calcutta, India, discovered what became known as bosons and went on to work with Albert Einstein to define one of two basic classes of subatomic particles. Much of the credit for discovering the boson, or "God particle," was given to British physicist Peter Higgs, much to the chagrin of the Indian government and people.
Early Life
Physicist Satyendra Nath Bose was born in Calcutta (now Kolkata), West Bengal, India, on January 1, 1894, the eldest and only male of seven children. Bose was a brainiac early on. He passed the entrance exam to the Hindu School, one of India's oldest schools, with flying colors and stood fifth in the order of merit. From there, Bose attended Presidency College, where he took an intermediate science course and studied with renowned scientists Jagadish Chandra Bose and Prafulla Chandra Ray.
Bose received a Bachelor of Science in mixed mathematics in 1913 from Presidency College and a Master of Science in the same subject in 1915 from Calcutta University. He received such high scores on the exams for each degree that not only was he in first standing, but, for the latter, he even created a new record in the annals of the University of Calcutta, which has yet to be surpassed. Fellow student Meghnad Saha, who would later work with Bose, came in second standing.
Between his two degrees, Bose married Usha Devi at age 20. After completing his master's degree, Bose became a research scholar at the University of Calcutta in 1916 and began his studies on the theory of relativity. He also set up new departments and laboratories there to teach undergraduate and graduate courses.
Research and Teaching Career
While studying at the University of Calcutta, Bose also served as a lecturer in the physics department. In 1919, he and Saha prepared the first English-language book based on German and French translations of Albert Einstein's original special and general relativity papers. The pair continued to present papers on theoretical physics and pure mathematics for several years following.
In 1921, Bose joined the physics department at the University of Dhaka, which had then been recently formed, and went on to establish new departments, laboratories and libraries in which he could teach advanced courses. He wrote a paper in 1924 in which he derived Planck's quantum radiation law without referencing classical physics—which he was able to do by counting states with identical properties. The paper would later prove seminal in creating the field of quantum statistics. Bose sent the paper to Albert Einstein in Germany, and the scientist recognized its importance, translated it into German and submitted it on Bose's behalf to the prestigious scientific journal Zeitschrift für Physik. The publication led to recognition, and Bose was granted a leave of absence to work in Europe for two years at X-ray and crystallography laboratories, where he worked alongside Einstein and Marie Curie, among others.
Einstein had adopted Bose's idea and extended it to atoms, which led to the prediction of the existence of phenomena that became known as the Bose-Einstein Condensate, a dense collection of bosons—particles with integer spin that were named for Bose.
After his stay in Europe, Bose returned to the University of Dhaka in 1926. Although he did not have a doctorate, Einstein had recommended he be made a professor, and so Bose was made head of the physics department. But upon his return, Bose did not publish for a significant period of time. According to a July 2012 New York Times article in which Bose is described as the "Father of the 'God Particle,'" the scientist's interests wandered into other fields, including philosophy, literature and the Indian independence movement. He published another physics paper in 1937 and in the early 1950s worked on unified field theories.
After 25 years in Dhaka, Bose moved back to Calcutta in 1945 and continued to research and teach there until his death in 1974.
Recognition and Honors
Several Nobel Prizes were awarded for research related to the concepts of the boson and the Bose-Einstein Condensate. Bose was never awarded a Nobel Prize, despite his work on particle statistics, which clarified the behavior of photons and "opened the door to new ideas on statistics of Microsystems that obey the rules of quantum theory," according to physicist Jayant Narlikar, who said Bose's finding was one of the top 10 achievements of 20th-century Indian science.
But Bose himself responded simply when asked how he felt about the Nobel Prize snub: "I have got all the recognition I deserve."
The Indian government honored Bose in 1954 with the title Padma Vibhushan, the second-highest civilian award in India. Five years later, he was appointed as the National Professor, the highest honor in the country for a scholar. Bose remained in that position for 15 years. Bose also became an adviser to the Council of Scientific and Industrial Research, as well as president of the Indian Physical Society and the National Institute of Science. He was elected general president of the Indian Science Congress and president of the Indian Statistical Institute. In 1958, he became a Fellow of the Royal Society.
About 12 years after Bose's death on February 4, 1974, the Indian parliament established the S.N. Bose National Centre for Basic Sciences in Salt Lake, Calcutta.
Regardless of the honors and recognition his own country bestowed upon Bose, the international community failed, for the most part, to regard him as a scientist who made a major discovery. When in the summer of 2012 people celebrated the international cooperation that led to a breakthrough in identifying the existence of the boson particle, they credited British physicist Peter Higgs and the Higgs boson particle.
"Many in India were smarting over what they saw as a slight against one of their greatest scientist," The Huffington Post wrote in a July 10, 2012, article. The article also quoted an editorial written earlier that week in The Economic Times, which said, "Many people in this country [India] have been perplexed, and even annoyed, that the Indian half of the now-acknowledged 'God particle' is being carried in lower case."
The editorial went on to say that what people do not realize that is the naming of all bosons after Bose "actually denotes greater importance."
http://www.biography.com/peop…/satyendra-nath-bose-20965455…
https://en.wikipedia.org/w…/Bose%E2%80%93Einstein_statistics
http://www.humantouchofchemistry.com/satyendra-nath-bose.htm
https://en.wikipedia.org/wiki/Boson
https://simple.wikipedia.org/wiki/Higgs_boson

BoseEinstein Condensate

In ordinary physics, each particle is distinct from each other. You can track each particle. This is true of all big and small things like planets, rubber balls and even grains of dust. But when we go into smaller scales, like subatomic particles (like electrons), the ordinary rules don't apply. The particles become indistinguishable, and so we cannot track them. This is the realm of quantum physics.

S.N. Bose and Albert Einstein together developed many of the principles that apply in quantum physics. These are together known as BoseEinstein Statistics. While this science is quit difficult, it makes an interesting prediction. It says that atoms, when cooled to a temperature close to absolute zero (273.15C), will collapse into a new state of matter. This is called the BoseEinstein Condensate (BEC).

An Autumn's Tale


A classic 1987 Hong Kong romantic drama film entirely shot New York City, An Autumn's Tale is directed by Mabel Cheung and starring Chow Yun-Fat and Cherie Chung.
Jennifer (Chung) comes to New York from Hong Kong in order to join her boyfriend, Vincent (Danny Chan), and to study. She is picked up from the airport by her distant cousin Samuel (Yun-Fat) and his buddies and taken to her new apartment, upstairs from Samuel's one. But when soon after, she is dumped unceremoniously by Vincent, who takes off for Boston, the young woman finds herself a fish out of water in New York. Samuel, however, has immediately taken a liking in her and tries his best to help her out whilst being very self-conscious about their very different backgrounds and personalities. And whilst Jennifer loves his company, she has a hard time imagining seeing them end up together. Nonetheless, the two slowly become closer until Vincent suddenly shows up again trying to win back his old flame.
A romantic drama, which careful;y avoids many of the cliches associated with the genre, An Autumn's Tale's major strength is its two great lead actors as well as their character development, which pushes the film forward as opposed to a more plot-driven approach. Chow Yun-Fat and Cherie Chung are both wonderful in their respective roles and the screenplay gives them plenty to work with whilst Mabel Cheung's direction is natural and understated. Apart from that, the New York setting, a rarity for Hong Kong productions, along with a great soundtrack really make this one stand out. Touching, down-to-earth and understated, An Autumn's Tale ranks amongst the best romantic films to ever come out of Hong Kong. The film was nominated for seven Hong Kong Film Awards, winning Best Film, Screenplay and Cinematography, and six Golden Horse Awards, winning one for Best Actor for Chow Yun-Fat. The film was also ranked number 49 on the Hong Kong Film Awards' list of Best 100 Chinese Motion Pictures.

The Dark Universe at Milky Way's Galactic Center --Has Evidence Been Detected?




Understanding the ubiquitous yet mysterious substance known as dark matter is a prime goal of modern astrophysics. Some astronomers have speculated that dark matter might have another property besides gravity in common with ordinary matter: It might come in two flavors, matter and anti-matter, that annihilate and emit high energy radiation when coming into contact. The leading class of particles in this category are called weakly interacting massive particles (WIMPS). If dark matter annihilation does occur, the range of options for the theoretical nature of dark matter would be considerably narrowed.
We live in a dramatic epoch of astrophysics. Breakthrough discoveries like exoplanets, gravity waves from merging black holes, or cosmic acceleration seem to arrive every decade, or even more often. But perhaps no discovery was more unexpected, mysterious, and challenging to our grasp of the "known universe" than the recognition that the vast majority of matter in the universe cannot be directly seen.
According to the latest results from the Planck satellite, a mere 4.9% of the universe is made of ordinary matter (that is, matter composed of atoms or their constituents). The rest is dark matter, and it has been firmly detected via its gravitational influence on stars and other normal matter. Dark energy is a separate constituent.
CfA astronomer Doug Finkbeiner and a team of colleagues claim to have identified just such a signature of dark matter annihilation. They studied the spatial distribution of gamma-ray emission in the Milky Way, in particular gamma-ray emission from the Galactic Center region. This region is both relatively nearby and has a high matter density (and nominally a high dark matter density as well).
Earth is about 25,000 light years from the teeming, tumultuous Galactic Center. A Chandra X-Ray Observatory panoramic view shown below extends 400 light years by 900 light years. Even at this distance from the center of the Galaxy, conditions are getting crowded, and the energy level is increasing dramatically (Figure 24). Supernova remnants (SNR 0.9-0.1, probably the X-ray Thread, and Sagittarius A East), bright binary X-ray sources containing a black hole or a neutron star (the 1E sources), and hundreds of unnamed point-like sources due to neutron stars or white dwarfs light up the region. The massive stars in the Arches and other star clusters (the DB sources) will soon explode to produce more supernovas, neutron stars, and black holes.
If dark matter annihilation occurred, the location would be expected to be bright in gamma-rays. Indeed, a large gamma-ray signature has been seen from the area that extends over hundreds of light-years (there is also fainter emission extending outward for thousands of light-years). There are other possible explanations, however, most notably that the gamma-rays result from a large population of rapidly spinning pulsars, the nuclear ashes of some supernovae.
The scientists revisited the set of previously published gamma-ray observations, applying careful new data reduction methods in order to constrain more precisely the location of the emission, and they did so for each of the several observed energy regimes of the gamma-ray emission. Pulsars have a distinctive spatial distribution: they are located where stars are found, predominantly in the plane of the galaxy.
The team was able to show with high significance that the distribution of gamma-ray emission is in good agreement with the predictions of simple annihilating dark matter models, but less likely to be consistent with a pulsar explanation. Their result, if confirmed, would be an impressive breakthrough in the understanding of the nature of dark matter, the dominant constituent of the cosmos.
http://www.cosmos.esa.int/web/planck
http://www.dailygalaxy.com/…/the-dark-universe-at-milky-way…
https://en.wikipedia.org/…/Weakly_interacting_massive_parti…
https://en.wikipedia.org/wiki/Galactic_Center
http://www.astro.ucla.edu/~ghezgr…/…/journey/wavelength.html