Search This Blog

Sunday, January 5, 2020

How to Treat Drinking Water for Pesticides


Source: https://water.usgs.gov/edu/pesticidesgw.html
Pesticides are chemicals used to kill or control pests such as insects, weeds, fungus, bacteria, rodents, fish or any other type of organism that poses a problem. Pesticides are most often applied to farmland, gardens and lawns. Pesticides are also applied to water bodies (for example, rivers, canals or lakes) to control pests such as mosquitoes, weeds or invasive fish species.
Pesticides have the potential to contaminate drinking water supplies in both agricultural and urban settings. Under the Safe Drinking Water Act (1974), the U.S. EPA and other federal agencies monitor and regulate drinking water supplies. Many contaminants of drinking water occur at very low concentrations. Whether the contaminants pose health risk depends on how toxic the pesticides are, how much is in the water, and how much exposure occurs on a daily basis.
Pesticide contamination of drinking water is very common, especially in agricultural areas. Accidental or illegal spilling or dumping of pesticides can lead to contamination of drinking water, and even proper application of pesticides can lead to contamination of drinking water through leaching into groundwater or runoff into surface water bodies. Concentrations of pesticides tend to be highest in streams adjacent to agricultural areas.
Pesticides can sometimes first appear in drinking water wells decades after the pesticides were applied or spilled, depending on the chemical properties of the pesticide and the geologic conditions.”
In a study published in 2006 by the U.S. Geological Survey, atrazine (a pesticide banned in the European Union but still widely used in the U.S.) was found 90% of the time in streams in agricultural areas and 70% of the time in streams in urban areas, and it was also frequently detected in groundwater [1]. Because groundwater can move very slowly, pesticides can sometimes first appear in drinking water wells decades after the pesticides were applied or spilt, depending on the chemical properties of the pesticide and the geologic conditions. Because of this, even pesticides that are no longer in use can still contaminate water supplies.

PESTICIDE FACTS

  • Pesticides are potentially toxic to humans and can have both acute and chronic health effects, depending on the quantity and the ways in which a person is exposed.
  • Some of the older, cheaper pesticides can remain in the soil and water for years. They have been banned in developed countries for agricultural use but are still used in many developing countries.
  • There are more than 1,000 pesticides used around the world to ensure food is not damaged or destroyed by pests. Each pesticide has different properties and toxicological effects (and the toxicological effects of multiple pesticides can be greater than the sum of their parts).
When using pesticides that may contaminate water supplies, the risk of contamination may be minimized by 1) using short-lived pesticides that biodegrade easily, 2) using pesticides that tend to stick to soil and not move easily, and 3) avoiding disposal of pesticides where they may contaminate water resources, such as near a well or spring or down a storm sewer.
Interesting fact: The pesticide DDT is so persistent in the environment that it is still found in fish more than 40 years after it was banned in the U.S. in 1972.

Health Effects Associated with Pesticides in Drinking Water

There are many different pesticides, each with a different level of toxicity. The health risks associated with pesticides in drinking water are related to how toxic the compound is, how much is in the water, and how much exposure a human gets to the contaminated water. In large doses, which could come from direct exposure to pesticides, they can cause health problems such as cancer, organ damage, reproductive effects, birth defects, or nervous system damage. In drinking water, concentrations are usually low, but some pesticides are toxic even at very low levels.
“High levels of nitrate from chemical fertilizers in the water supply may indicate possible contamination by pesticides.”
Many pesticides are not regulated as contaminants in drinking water, but the U.S. Environmental Protection Agency (USEPA) has set maximum contaminant levels (MCLs) for several pesticides. A MCL is the maximum concentration of a contaminant that is legally allowed in public drinking water systems under the Safe Drinking Water Act. The long-term health risks associated with concentrations above the MCL are considered to be unacceptable. The MCLs for individual pesticides are based on their toxicity, with more toxic pesticides having lower MCLs. Their values range from 0.00005 to 4 milligrams per liter (mg/L or parts per million). For example, the MCL for atrazine, which is the most commonly detected pesticide in drinking water in the U.S., is 0.003 milligrams per litre.
High levels of nitrate from chemical fertilizers in the water supply may indicate possible contamination by pesticides. Because these tests are the expensive and only test for specific compounds, it is best to only test for pesticides that you think may be contaminating your water.

How to Treat Drinking Water for Pesticides

Pesticides can be removed from drinking water by reverse osmosis or granulated activated carbon (GAC) filters. Reverse osmosis works by forcing the water through a membrane that allows water molecules to pass through but blocks larger ions or molecules, such as ones associated with iron, lead or pesticides. In homes, reverse osmosis systems are usually small systems (called point-of-use systems) located near the kitchen sink.
Reverse osmosis systems are cost-effective, but low-end systems can only produce a few gallons of treated water each day. Significant recent improvements in membrane elements allow for more expensive systems to produce 100 or more gallon per day. The taste of the water may be affected by the removal of the minerals.
Granulated activated carbon (GAC) filters are relatively inexpensive and are simple to use. They remove pesticides and other contaminants that stick to small particles of material such as coal or charcoal. These filters can take the form of point-of-use systems or pitchers manually filled with water. GAC filters must be replaced or regenerated periodically to maintain their effectiveness. 

FACTORS AFFECTING PESTICIDE POLLUTION OF WATER

Drainage: Farmland is often well-drained and natural drainage is often enhanced by land drains. Water from excessive rainfall and irrigation cannot always be held within the soil structure. Therefore, pesticides and residues (also nitrates and phosphates) can be quickly transported to contaminate groundwater and freshwater supplies over a large geographical area.
The pesticide: Individual pesticides have unique properties, and many variable factors (including those below) determine the specific risk in terms of water pollution.
  • active ingredient(s) in the pesticide formulation
  • contaminants that exist as impurities in the active ingredient(s)
  • additives that are mixed with the active ingredient(s) (wetting agents, diluents or solvents, extenders, adhesives, buffers, preservatives, and emulsifiers)
  • degradate that is formed during chemical, microbial, or photochemical degradation of the active ingredient
  • Pesticide half-life: The more stable the pesticide, the longer it takes to break down. This can be measured in terms of its half-life, the longer it takes to break down, the higher its persistence. The half-life is unique to individual products but variable depending on specific environmental and application factors.
An active substance is any chemical, plant extract, pheromone, or microorganism (including viruses), that has an action against ‘pests’ or on plants, or parts of plants or plant products.
Mobility in soil: All pesticides have unique mobility properties, both vertically and horizontally through the soil structure. Residual herbicides applied directly to the soil are designed to bond to the soil structure.
Solubility in water: Many pesticides are soluble in the water out of necessity so that they can be applied with water and be absorbed by the target. The higher the solubility of the pesticide, the higher the risk of leaching. Residual herbicides are generally of lower solubility to aid soil binding but their persistence in the soil can cause other problems.
Microbial activity: Pesticides in the soil are primarily broken down by microbial activity. The greater the microbial activity, the faster the degradation. Loss of pesticide residues can also occur by evaporation and photodecomposition.
Soil temperature: Soil microbial activity and pesticide breakdown is largely linked to soil temperature.

Application rate: The more pesticide that is applied, the longer significant concentrations remain.
Irrigation Management: Irrigation increases the chance that pesticides will migrate to ground water and surface water. Irrigating saturated soils or irrigating at a rate that exceeds the infiltration rate of soil promotes runoff that can carry pesticides with it. Irrigation that promotes the frequent downward movement of water beyond the root zone of plants also promotes the leaching of substances including pesticides to ground water. This is of particular concern in areas where frequent irrigation is necessary because of coarse-textured soils. Proper irrigation management is critical to minimize the risk of pesticides infiltrating ground water.




How to Prevent Water Contamination


There are a variety of common management practices that provide multiple benefits.

Crop and Soil Management Strategies

  • tractor pulling a sprayer through planted field
    Crop rotation keeps pests off-balance, especially those that prefer a particular crop with its associated cultural practices.
  • Cover crops provide crop residues, which enhance soil organic matter.
  • Careful crop variety selection ensures that the crop is well-adapted to local conditions and grower needs,
    and often provides valuable disease or insect resistance, or tolerance to pesticides that will be used to control pests.
  • Proper seedbed preparation and planting allows the crop to emerge quickly, potentially reducing early-season disease and insect damage and weed competition.
  • Proper drainage and irrigation management promotes optimum plant growth, inhibits various root diseases, and reduces runoff.
  • Proper equipment use avoids soil compaction, which can slow crop growth and promote runoff.

Conservation Buffers

aerial view of conservation buffers
Conservation buffers are areas designed to intercept and trap chemicals before they reach surface water. Often native grasses are planted alone or in combination with shrubs and trees along field borders between the crop and a waterway. Buffers trap pesticides, bacteria, fertilizers, and soil sediment, reducing the quantity of potential contaminants that move off the site. Buffers are one of the best management tools a landowner can install, as they offer multiple benefits, and often require little maintenance.

Choose these sites for more information on conservation buffers:
  • Conservation Buffers – Design Guidelines for Buffers, Corridors, and Greenways, National Agroforestry Center, USDA
  • Conservation buffers can improve water quality, University Extension, Iowa State University
  • Use conservation buffers to make dollars and sense, University Extension, Iowa State University
  • Buffer Strips: Common Sense Conservation, Natural Resources Conservation Service, USDA
For more on buffers, view or download The Value of Buffers For Pesticide Stewardship and Much More

Integrated Pest Management (IPM)

researcher examining grass on edge of water
An IPM program combines the best techniques to prevent pests and to keep them below economically damaging threshold levels and ensure that pesticides are used appropriately. If a pesticide is prone to reach surface or groundwater, suitable IPM tactics can reduce or eliminate the risk of surface or groundwater contamination.

The IPM program also facilitates the selection of a pesticide to be delivered precisely on target and at the proper time. Crop scouting, or monitoring, correctly identifies the pest and collects information needed so that applications are made only when needed, and only when the pest is vulnerable, allowing for a more effective pesticide application. Reducing the need for multiple applications of pesticides reduces the chance that pesticides may reach and contaminate water. Visit the PES site Integrated Pest Management.
Best Management Practices (BMPs) are conservation practices, or systems of practices, and management measures that control soil loss and reduce water quality degradation caused by nutrients, animal wastes, toxics, and sediment. BMPs can improve the environment while also improving the farmer’s bottom line.
Visit any of these web sites to learn more about best management practices to protect water resources from agricultural pesticides:

Selecting Appropriate Pesticides

Protecting water from contamination requires planning and records. Past pest scouting or monitoring records, along with past pesticide application records, help you select the best controls. Selecting the proper pesticide for the crop, the pest, and the site is important. When a site has groundwater near the surface and the soil is permeable, then the leaching potential of the pesticide must be considered during pesticide selection.
Applicators should read the label to find warnings that tell them that the pesticide may leach. Here is an example of language to look for in the Environmental Hazards section of the label: “This product has properties and characteristics associated with chemicals detected in groundwater. The use of this chemical in areas where soils are permeable, particularly where the water table is shallow, may result in groundwater contamination.” There may also be a “Groundwater Advisory” statement on the label. Many new labels have this statement, which is a critical aid in selecting the right pesticide for the job.

Proper Pesticide Mixing and Loading Procedures

man mixing pesticides over a concrete pad
More pesticide spills occur while the pesticide is being measured and mixed than during any other part of a pesticide application. Locate the mixing/loading site away from wells, streams and lakes. Maintain a distance of at least 100 feet (check the pesticide label for more specifics) between the mixing and loading site and wellheads, ditches, streams or other water sources.

Measure, mix and load over an impervious surface, such as a concrete pad, which prevents spills from soaking into the ground. Measure the product carefully to avoid spills. Using a closed transfer system to mix and load pesticides also helps reduce the risk of spills. If you are not using a pad, move the mixing and loading steps from place to place to avoid chemical buildup from accidental splashes or spills (see Pesticide Spills).
Be prepared for spills and have a “spill kit” readily available near the mixing loading area. Never leave a tank while it is being filled, and pay constant attention during filling to prevent overfilling and spilling of the pesticide on the ground. Be disciplined and patient.
Applicators should read the label carefully to find warnings regarding mixing/loading pesticides. Here is a statement found in the Environmental Hazards section of many labels: “Most cases of groundwater contamination involving this pesticide have been associated with mixing/loading and disposal sites. Caution should be exercised when handling this product at such sites to prevent contamination of groundwater supplies. Use of closed systems for mixing or transferring this pesticide will reduce the probability of spills. Placement of the mixing/loading equipment on an impervious pad to contain spills will help prevent groundwater contamination.”

Prevent Pesticide Backflow

person inserting anti-siphon device
Backflow occurs when a water supply loses pressure and starts flowing backwards toward the water source. The backward flow creates a siphon that draws some of the contents of the sprayer tank back toward the water source if a pipe or hose is below the water surface in the tank. If backflow occurs, the water supply pipes, pumps, and well become contaminated by pesticides from the tank. An anti-siphon device (check valve) prevents backflow and the resulting contamination from occurring. Proper anti-siphoning techniques include the use of a reduced pressure zone (anti-siphon) device or an air gap between the filler pipe and the tank.

Proper Application Procedures

Proper application of pesticides starts with calibration. Calibrating application equipment is the only way to be sure that the proper amount of pesticide is applied. Application of excess pesticide increases the risk of contaminating water by overloading the protective mechanisms of degradation and adsorption, making them ineffective. Over application is not only risky for the environment but is a violation of label directions and the law.
Knowledge of the application site is very important for preventing water contamination. You should know where wells are located, the depth to groundwater, and where surface water is located before making an application. After identifying these features, make plans to protect them. Decide in advance where to turn the application equipment on and off. Using buffer zones and setback areas creates safety zones by keeping applications away from sensitive areas, particularly surface waters. Pesticide applications should hit the target precisely. Applications that move off-target can contribute to water contamination.
Preventing drift is another important task of the applicator. Drifting pesticide can contaminate water and cause other problems. Monitoring the weather conditions, setting the boom height as close as possible to the target, and selecting the proper nozzle type are important activities that help reduce the chance of pesticide drift contaminating surface waters.

Irrigation Management

Irrigation increases the chance that pesticides will
migrate to groundwater and surface water. Irrigating saturated soils or irrigating at a rate that exceeds the infiltration rate of soil promotes runoff that can carry pesticides with it. Irrigation that promotes the frequent downward movement of water beyond the root zone of plants also promotes the leaching of substances, including pesticides, to groundwater. This is of particular concern in areas where frequent irrigation is necessary because of coarse-textured soils. Proper irrigation management is critical to minimize the risk of pesticides moving to groundwater.

Proper Pesticide Storage

front yard of home being irrigated with sprinkler system
Proper storage of pesticides is also important to prevent water contamination. Locking pesticides inside a fire-resistant, spill-proof facility is an excellent way to prevent accidental pesticide spills. Proper storage is very cheap compared with the expensive consequences of accidents, spills, or fires. Be prepared for spills, and have a “spill kit” readily available inside or near the storage area.


Proper Disposal of Pesticides and Containers

Pesticide containers that have not been triple rinsed pose a risk to water resources. Contaminated containers left outside, and exposed to rain, can leak pesticides into the environment. Triple rinsing pesticide containers prior to disposal remove pesticide residues. Water collected from cleaning and rinsing application equipment should be applied to the original site of the application. Be careful not to exceed label rates. Re-using this pesticide-containing water is an environmentally responsible way to dispose of this material. Collect rinsed containers in a dry, secure, and protected area for disposal. Dispose of the rinsed containers following label directions and local ordinances. Use pesticide container recycling programs where available.
Compiled by Ron Gardner
References
https://www2.usgs.gov/envirohealth/headlines/2015-08-11-understanding_arsenic.html
https://www.usgs.gov/special-topic/water-science-school/science/pesticides-groundwater?qt-science_center_objects=0#qt-science_center_objects
https://www.safewater.org/fact-sheets-1/2017/1/23/pesticides
http://www.filterwater.com/t-pesticides.aspx
https://pesticidestewardship.org/water/prevent-contamination/

Thursday, December 26, 2019

Load transfer from different types of bridges

Different types of bridges :

Beam bridge or Stringer Bridge or Girder bridge:

Beam bridge is the one which comes to your mind when someone asks you about what is a bridge? This is one of the  basic type of bridges.
This type of bridges are simply supported bridges consisting of horizontal beams and vertical piers; Beam bridges are also named as stringer bridge or girder bridge. These type of bridges are typically spanned with two or more spans and supported by abutment or pier at each end. This type of bridges are constructed using RCC, Wood, steel etc. Beam bridges have span less than 80m.
As mentioned above, beam bridges are simply supported bridges (beam that is supported on piers), where the beam is laid across the supports. In this type of bridges, the beam should be strong enough to bear the loads on it. These loads are further carried to bridge supports and then to earth.
The top edge of the beam possesses compression as the loads are applied on it where the lower part of the beam is being stretched and is under tension.
Forces on Beam Bridge

Advantages of Beam bridge:

1.This type of beams are very easy to construct and erect.
2. This type of beams are good for short spans.
3. Wide distances can be spanned by resting beams on piers.
4. Ease in constructing temporary bridges.

Disadvantages of Beam bridge:

1. Can be expensive, requires RCC to built.
2. They are spanned by limits.

Arch bridge:

An arch bridge is the most popular type of bridge which is extensively used by ancient Romans.The arch bridge is usually made up of stone, concrete or steel. As the name itself mirroring that, the bridge is in the shape of an arch. An arch bridge is a curve shaped bridge where the load on the curve is not directly applied straight down, but instead, loads are carried along the curve of the arch to the end of supports. Meaning that no part of the bridge takes a high amount of pressure. These supports are also called as abutments. Abutments carry loads of the entire bridge & it is responsible for holding the arch in a precise position.
Forces on ARCH Bridge
The no. of curves (arches) in a bridge depends on stress and loads that bridge should support. The span length of arch bridges is normally up to 250m, and the roadway of the bridge lies on the arch structure.

Advantages of Arch Bridge:


1. Easy to build with the locally available material.

2. these type of bridges are very rigid and extremely strong.
3. Arch bridges are built up with a variety of materials like stone, concrete, steel, etc.

Disadvantages of Arch bridge:


1. They take a long time to build.

2. It requires a massive amount of building materials to build.

Truss Bridge:

Truss is a framework consisting of struts (inclined members). These bridges are constructed by using trusses which are comprised of many small elements forming triangular trusses. The span length of truss bridge is in between 50m-110m.
Forces on truss bridge
Trusses are very rigid, lightweight and can support heavy loads. Trusses serve in transferring the load from a single point to the wider area. The weight of the bridge is very less when compared with other types.
When the load is applied to the truss bridge, the top edge possess compression and loads are shared among the angled members to supports and then to earth.

Advantages of Truss Bridge:

1. This type of bridge is easily built in the factory and then framed on site.
2. The piers or supports are comparatively less when compared to the beam bridge,
3. They are strong and rigid and very light on weight possess efficient use of materials.

Disadvantages of Truss Bridges:

1. Requires high skilled professionals to design it.
2. They are more complex than beam bridges in terms of designing.

Suspension bridges:

This type of bridges are constructed by suspending the deck slab using suspension cables. The roadway is hanged using steel cables which are connected to two towers and secured by anchors on both ends of the bridge.
In addition to the deck slab, the truss system is also featured with truss system just beneath the deck which helps to stiffen and to keeps the deck in precise position to reduce the tendency of the roadway to sway.
forces on Suspension Bridge
When the load is applied to the suspension bridge, the deck slab possess compression and then travels up the ropes, cables or chains to transfer the compression to the towers. The towers then dissipate the compression directly into the earth by anchors.
The supporting cables which run parallel to the bridge possess tension forces, and these are connected to anchorages. Bridge anchorages are massive concrete blocks which serve in dissipating the tension force to the ground
Bridge anchorages are essentially solid rock or massive concrete blocks in which the bridge is grounded. Tensional force passes to the anchorages and into the ground. The span length of Suspension bridge is in between 150m-2000m

Advantages of Suspension bridge:

1. Strong and lightweight.
2. These type of bridges provide long span which helps in crossing the river.

Disadvantages of Suspension bridge:

1. Expensive to build.
2. Prone to sway and ripple with the wind, so this type of bridges are not suitable for railways.

Cable-stayed bridge:

This type of the bridge are modern bridges and it is similar to the suspension bridge. In this type, cables are connected directly to the tower instead of suspended cables. Tension is constantly acting on the cables, which are stretched because they are attached to the roadway. This type of bridge doesn’t have any anchorages to bear the compression and has only one tower to carry the compression. The span length of Cable stayed bridge is in between 500m-1000m.
forces on Cable Stayed Bridge
In this type of bridge, the cables are directly connected to the roadway at different points radially, and towers alone bear the compression forces.

Advantages of Cable-Stayed Bridge:

1. It is more economical when compared with the suspension bridge.
2. It is good for medium spans and can be easily built by cantilevering out from the tower.

Disadvantages of Cable-Stayed Bridge:

1. Maintenance and inspection may be more difficult.
2. this type of bridges are not suitable for far distances.

Cantilever bridge:

The word cantilever refers that the beam which has only one support and the other end is kept free in space. Cantilever bridges are same to this but don’t think that one end of the bridge is kept free. Cantilever bridges are constructed in parts and the two free ends are connected with suspended deck. Cantilever bridge has a span in between 150m-500m.
forces on Cantilever Bridge with suspension deck
Any bridge is subjected to compression and tension forces. In this type of bridge, the suspended deck is provided to join the two free ends of the cantilever bridge.
When the load is applied on cantilever bridge, the top supports are subjected to a tensional force (pulling force), and bottom supports are subjected to the compression force( pushing force) which makes the bridge to be balanced. As long as force is balanced, the bridge will stand in stable position.

Advantages of Cantilever Bridge:

1. This type of bridges are adopted only when the supports cannot be provided at specific positions.
2. Support is required only on one side of the cantilever.

Disadvantages of Cantilever Bridge:

1. Cantilever bridges are prone to high turning stress during construction.
2. If the forces aren’t balanced the bridge may buckle.

அனுமன் ஜெயந்தி: விரதம் இருப்பது எப்படி


வாயுதேவனின் அம்சமாக அஞ்சனாதேவிக்கு மார்கழி மாதம் மூல நட்சத்திரத்தில் பிறந்தவர், ஆஞ்சநேயர். அவர் பிறந்த தினமே ‘அனுமன் ஜெயந்தி’யாக கொண்டாடப்படுகிறது.

ராமாயணத்தில் இணையற்ற இடத்தைப் பிடித்தவர் ஆஞ்ச நேயர். அறிவு, உடல் வலிமை, துணிச்சல், புகழ், ஆரோக்கியம், வாக்கு சாதுரியம், வீரம் ஆகிய அனைத்தும் ஒருங்கே அமையப்பெற்றவர். சீதாதேவியால் ‘சிரஞ்சீவி’ பட்டம் பெற்றவர். அவரது பிறப்பு மகத்துவம் மிகுந்தது. அவர் பிறந்த தினமே ‘அனுமன் ஜெயந்தி’யாக கொண்டாடப்படுகிறது. வாயுதேவனின் அம்சமாக அஞ்சனாதேவிக்கு மார்கழி மாதம் மூல நட்சத்திரத்தில் பிறந்தவர், ஆஞ்சநேயர்.
திரேதாயுகத்தில் குஞ்சரன் என்ற சிவபக்தன் வெகுகாலமாக குழந்தை இல்லாமல் வருந்தினான். குழந்தைச் செல்வம் வேண்டி சிவபெருமானை நோக்கி தவம்புரிந்தான். அவன் முன் தோன்றிய ஈசன், ‘உனக்கொரு மகள் பிறப்பாள். அவளுக்கு ஒரு மகன் பிறப்பான். அவன் வலிமையும், வீரமும் பெற்று மரணம் இல்லாதவனாக வாழ்வான்’ என்று கூறி மறைந்தார்.
அவ்வாறே குஞ்சரனுக்கு ஒரு மகள் பிறக்க, அஞ்சனை என்று பெயரிட்டு வளர்த்தனர். அவள் பருவம் எய்ததும், கேசரி என்னும் வானர வீரனுக்கு அவளை மணமுடித்துக் கொடுத்தார் குஞ்சரன்.
ஒருநாள் அஞ்சனையின் முன்பு தர்மதேவதை தோன்றி, ‘பெண்ணே நீ வேங்கடமலைக்கு கணவனுடன் சென்று மகாதேவனை குறித்து தவம் செய். அவரருளால் விண்ணவர் போற்றும் மகன் பிறப்பான்’ என்றது.
தேவதை கூறிய இடத்திற்குச் சென்ற அஞ்சனை, காற்றை மட்டும் உணவாகக் கொண்டு கடும் தவம் இருந்தாள். அவளது தவத்தைக் கண்டு வாயு தேவன் அதிசயித்தார். ஒரு முறை வாயு பகவான் சிவசக்தி வடிவான கனி ஒன்று, அஞ்சனையின் கைகளிலே வந்து தங்கும்படி செய்தார்.
அந்தக் கனியை உண்ட சில தினங்களில் அவள் கருவுற்றாள். அப்போது ஒரு அசரீரி எழுந்தது. ‘அஞ்சனா தேவி! சிவனுக்கும், சக்திக்கும் ஏற்பட்ட சிவசக்தி வடிவமான அம்சத்தை சிவனின் ஆணைப்படி, வாயுதேவன் கனி உருவில் உன்னை உண்ணச் செய்தான். உனக்கு சிவசக்தி அம்சம் கொண்ட மகன் பிறப்பான். அவன் வாயுபுத்திரன் என்று அழைக்கப்படுவான். விண்ணும் மண்ணும் அவனைப் போற்றி புகழும்’ என்றது.
அரண்மனைக்குத் திரும்பிய அஞ்சனை, நடந்தது பற்றி தனது கணவர் கேசரியிடம் கூறினாள். மாதங்கள் பல கடந்தன.
ஒரு மார்கழி மாதம் மூல நட்சத்திரம் கூடிய நன்னாளில் அஞ்சனாதேவிக்கு ஆண் குழந்தை பிறந்தது. அஞ்சனாதேவியின் மகன் என்பதால், அவர் ஆஞ்சநேயர் என்று அழைக்கப்பட்டார்.
வனவாசம் வந்த ஸ்ரீராமனுக்கு, எந்தவித பிரதிபலனையும் கருதாமல் தூய அன்புடனும், பக்தியுடனும் தொண்டு செய்தார். ராமனுக்கு பணிவிடை செய்வதற்காகவே அவர் வாழ்ந்தார். சொல்லின் செல்வனான அனுமன் முதன் முதலாக ராமனைச் சந்தித்தபோது, ‘நீங்கள் யார்?’ என்று ராமன் கேட்டார்.
அதற்கு, ‘காற்றின் வேந்தருக்கு அஞ்சனை வயிற்றில் வந்தேன். நான் அனுமன் என்று, தன் தந்தையின் பெயர், தாயாரின் பெயர், தன் பெயர் அனைத்தையும் அடக்கமாக கூறினார் அனுமன்.
ஆஞ்சநேயருக்கு சுந்தரன் என்றும் ஒரு பெயர் உண்டு. ராமாயணத்தை எழுதிய வால்மீகி மகரிஷி அதை ஏழு காண்டங்களாக பிரித்தார். அனு மனுக்கு சிறப்பு சேர்க்கும் விதத்தில் ஒரு காண்டத்தை சுந்தர காண்டம் என்று அவரது பெயரால் அழைத்து மகிழ்ந்தார்.
விரதம் இருப்பது எப்படி?
அனுமன் ஜெயந்தி, ஜெயந்திகளுக்கு எல்லாம் ஜெயந்தி. அன்றைய தினம் நாம் விரதம் இருந்தால் சகல மங்களங்களும் உண்டாகும். நினைத்த காரியம் கை கூடும். துன்பம் விலகும். இன்பம் பெருகும். அனுமன் ஜெயந்தி விரதம் இருப்பவர்கள் அதிகாலை குளித்து உணவு உண்ணாமல் ஆஞ்சநேயர் கோவிலுக்கு சென்று துளசியால் அர்ச்சனை செய்ய வேண்டும். ஆஞ்சநேயரை ராமநாமத்தால் சேவிப்பதோடு, வடை மாலை சாத்தி, வெற்றிலை மாலை அணிவித்து, வெண்ணை சாத்தி வழிபட வேண்டும்.
வாலில் குங்கும பொட்டு வைத்து வழிபடுவது விசேஷமானது. அவல், சர்க்கரை, தேன், பானகம், கடலை, இளநீர் முதலிய பொருட்கள் அனுமனுக்கு மிகவும் பிடிக்கும். அதை நைவேத்தியம் செய்வதனால் அனுமன் மிக மகிழ்வார்.
அனுமனுக்கு வாலில் தான் சக்தி அதிகம். அதனால் தான் ஆஞ்சநேயர் வாலில் குங்குமம் வைத்து வழிபடுகிறோம். பக்தி சிரத்தையுடன் ராம நாமத்தை உச்சரித்துக் கொண்டு வால் தோன்றும் இடத்தில் இருந்து தினமும் சந்தனம் பூசி, குங்கும திலகம் வைத்துக் கொண்டு வர வேண்டும். வாலின் நுனியை அடைந்ததும் கலைத்து விட்டு மறுபடியும் பொட்டு வைக்க வேண்டும். வால்முனையில் பொட்டு பூர்த்தி பெறுகின்ற சுப தினத்தில் வடை மாலை சாத்தி வழிபட வேண்டும். மார்கழி மாதம் வளர்பிறை திரயோதசியன்று 13 முடிச்சுகளோடு கூடிய மஞ்சள் கயிற்றை கலசத்திற்குள் வைத்து ஓம் நமோ பகவதே வாயு நந்தனாய என்ற மந்திரம் சொல்லி ஆவாஹனம் செய்து மஞ்சள், தனம், பூ மேலும் மற்ற பூஜை பொருட்களால் பூஜை செய்ய வேண்டும்.
கோதுமை மாவினால் தயார் செய்யப்பட்ட 13 பூரி, வெற்றிலை பாக்கு, தட்சணையோடு ஒரு தட்டில் வைத்து அந்தணருக்கு கொடுக்கலாம். மேலும் அந்த அந்தணருக்கு சாப்பாடும் போடலாம். அனுமன் விரத தொடக்கத்தில் இவ்வாறு செய்வதால் சகல காரியங்களும் வெற்றி அடையும்.
காலை உணவாக பொரியும், பழமும் சாப்பிட வேண்டும். இதை பிறருக்கும் வழங்கலாம். பகல் உணவாக கிழங்கு, காய்கறிகளை சாப்பிடலாம். இரவில் ஆஞ்சநேயர் ஸ்தோத்திரம், ராமநாமம், ஆஞ்சநேயர் அஷ்டோத்திரங்கள், சுலோகங்கள் கூறி வழிபட வேண்டும்.
ஜெய் ஆஞ்சநேயா

Tuesday, December 17, 2019

First road with plastic waste in Sri Lanka (பிளாஸ்டிக் கழிவுகளை உபயோகித்து தார்ச்சாலை அமைத்தல்.)



A 500 metre road from Ratmalana to Borupana, South of Colombo had been paved with an asphalt mixture containing shredded and molten plastic extracted from municipal waste.
Non-recyclable plastic waste is taken from municipal waste (in Sri Lanka plastic, paper and food waste is now separated in households) shredded and heated with aggregates at 165 degrees centigrade.
"The molten waste-plastic-mix coats the heated aggregates before being coated with bitumen," the firm said.
"The new material – waste plastic modified asphalt concrete mix – will be applied for surfacing of roads under 150 degrees centigrate temperature. "
The plastic asphalt mixture not only solves the waste problem but cuts road construction costs and makes the pavements more durable.
Tests are conducted on the pilot project, the company said.
"Similar waste plastic modified asphalt mixes are successfully applied to road surfacing in countries such as UK, Canada, Netherlands, Philippines, India and Indonesia," 

The Plastic and Bitumen Mixture

Using recycled plastic for road building sounds simple, but it actually requires a complex process to create the right material. "Different plastics do different things to bitumen," he explains. "If you use the wrong mix, it actually can make the bitumen more brittle."
It is good to avoids using PET bottles and other types of plastic that are easily recycled, and instead concentrates on types of waste plastic that might otherwise end up buried in the ground. Reid declined to go into too much detail, so as not to reveal too much about MacRebur's proprietary process.
In addition to keeping plastic out of landfills, the company's plastic road materials can save about 1 ton (.907 metric tons) in carbon dioxide output for each ton of bitumen that the plastic replaces, according to this fact sheet from MacRebur's website.
Thanks 

https://economynext.com/

பிளாஸ்டிக் கழிவுகளை உபயோகித்து தார்ச்சாலை அமைத்தல்.
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
சேகரிக்கப்பட்ட பிளாஸ்டிக் கழிவுகள், 1.60 மி.மீ. முதல் 2.50 மி.மீ. அளவுள்ள சிறு சிறு துகள்களாக வெட்டு இயந்திரங்களின் உதவியால் வெட்டப்பட்டு, சேகரித்து வைக்கப்படுகிறது. பின்பு இவை, தார்ச்சாலை அமைக்க சேகரிக்கப்பட்ட 110° செல்சியஸ் அளவிற்கு சூடுபடுத்தப்பட்ட கற்களுடன் சேர்த்து சுழற்சி முறையில் கலக்கப்படுகிறது. அவ்வாறு கலக்கப்படும் போது, கற்களில் உள்ள 1709 செல்சியஸ் வெப்பத்தினால், 30லிருந்து 60 வினாடிகளுக்குள் சிறு துகள்களாக நறுக்கப்பட்ட, பிளாஸ்டிக் துகள்கள் இளகி, கற்களின் மேல் போர்த்தியது போல், கற்களின் மேற்பரப்புகளை முழுவதுமாக மூடிவிடுகிறது.
இவ்வாறு இளகிய பிளாஸ்டிக் கழிவுகளுடன் சேர்க்கப்பட்ட கற்கள், உறுதியானவையாகவும், பிடிப்புத் தன்மையுள்ளதாகவும், மாறிவிடுகிறது. மேலும், கற்களின் மேற்பரப்பில் உள்ள சிறு சிறு நுண் இடைவெளி முழுவதுமாக மூடப்படுவதால், அதனுள், மழைநீர் அல்லது உப்பு கலந்த நீர் புகாமல் தடுக்கப்படுகிறது. இதனால், கற்கள் மழைநீரை உறிஞ்சி சிறு சிறு கற்களாக உடைவது தவிர்க்கப்படுவதுடன், சாலை குறுகிய காலத்திற்குள் பாழ்படுவது தவிர்க்கப்படுகிறது. இவ்வாறு, இளகிய பிளாஸ்டிக் கழிவுகளுடன் சேர்க்கப்பட்ட கற்களுடன், 1650 செல்சியஸ் வெப்ப அளவில் சூடுபடுத்தப்பட்ட தார் சேர்க்கப்படுகிறது.
மேலே கூறப்பட்ட வெப்ப அளவுகளில், தயார் செய்யப்பட்ட கலவையானது, 1109 - 1209 செல்சியஸ் வெப்ப அளவிற்குள்ளாக, தயார் நிலையில் உள்ள சாலைகளில் பரப்பப்பட்டு, கனமுள்ள சாலை உருளை வண்டி மூலம் இறுக்கம் கொடுக்கப்பட்டு, பிளாஸ்டிக் தார்ச் சாலை அமைக்கப்படுகிறது. 10 சதுர மீட்டர் அளவும் 25 மி.மீட்டர் கனமும் உள்ள பிளாஸ்டிக் தார்ச்சாலை அமைக்க, 27 கிலோ தார்க்கலவையும் 3 கிலோ பிளாஸ்டிக் நறுக்குகளும் தேவைப்படும். சாதாரண தார்ச் சாலை அமைக்க 30 கிலோ தார்க்கலவை தேவைப்படும். ஒரு பிளாஸ்டிக் சாலை அமைக்க தார்க்கலவையின் அளவில் 10 சதவீதம் பிளாஸ்டிக் நறுக்குகள் தேவைப்படும். இவ்வாறு அமைக்கப்பட்ட சாலைகள், உறுதி வாய்ந்தவையாகவும் மழைக்காலங்களில் சேதமடையாமலும் பிளாஸ்டிக் கழிவுகளின் பயன்பாட்டினால் புற ஊதா நிறக் கதிர் வெளிப்பாடு இல்லாமலும், அதிக கனரக வாகனப் போக்குவரத்தை தாங்கக் கூடியவையாகவும், குறைந்தது 7 வருடங்களுக்கு எந்தவித சேதாரம் இல்லாமலும் பயன்பாட்டில் இருக்கும்.

Alternative Method 
தற்போது பல்கலைகழகங்களில், கழிவு பிளாஸ்டிக் பொருட்களைக்கொண்டு வீதி அமைத்தல் எனும் விடயத்தின் கீழ் (Using Waste Plastic in Road Construction) எனும் தலைப்பின் கீழ் பல ஆய்வுக்கட்டுரைகள் வெளி வந்துள்ளன. இதில் பாவிக்கப்படும் தாருக்கு சிபாரிசு செய்யப்பட்டளவு பிளாஸ்டிக் சேர்க்கப்பட்டு தார் வீதிகளுக்கு பாவிக்கலாம் என கூறப்பட்டுள்ளது. இதனடிப்படையிலேயே எனிவரும் காலங்களில் கார்பட் வீதிகளுக்கு போடப்படும் அஸ்போல்ட் கொங்கிறீட்டுடன் சிபாரிசு செய்யப்பட்ட அளவு பிளாஸ்டிக் சேர்க்கப்பட்டு கார்பட் வீதிகள் அமைக்கப்படவுள்ளது.
இவ்வாறு பிளாஸ்டிக் சேர்ப்பதனால் வீதியின் பாவனைக்காலம் கூடுதலாகவும் வீதிகள் உறுதியாகவும் இருக்கும் எனவும் கூறப்படுகின்றது அத்துடன் மிக முக்கியமான விடயம் நகரிலே சேகரிக்கப்படும் பிளாஸ்டிக் போத்தல்கள் மீள் பாவனைக்கு உட்படுத்தி சுற்றுச்சூழலை பாதுகாக்கவும் முடியும்.










 திருகோணமலை  நகராட்சிமன்றம் பரீட்சாத்தமாக இராஜவரோதயம் சதுக்கத்திலுள்ள சிறிய வீதியொன்றிற்கு துண்டுகளாக வெட்டப்பட்ட பிளாஸ்டிக் போத்தல்களை தாருடன் உருக்கி 12.03.2021 அன்று வீதி தாரிடும் வேலையை ஆரம்பித்தது. தாரினையும் பிளாஸ்டிக்கினையும் உருக்கிய கலவையைக்கொண்டு சிறப்பாக வீதியை அமைத்துக்கொண்டது. 


Tuesday, December 10, 2019

Tackling E-Waste

‘Electronic Waste’. Electronic waste covers everything from home appliances like TVs, air conditioners, and fans to IT devices like computers and mobiles that have been replaced or have reached the end of their life cycle and need to be disposed of.

Waste electrical and electronic equipment (WEEE) is becoming a major threat to the whole world. Its toxic emissions mixed with virgin soil and air and causing harmful effects to the entire biota either directly or indirectly. Direct impacts include the release of acids, toxic compounds including heavy metals, carcinogenic chemicals and indirect effects such as biomagnification of heavy metals. Many private firms are involved in collecting, dismantling, separation and exporting e-wastes for recyclers. However, strict regulations are currently being followed as on approval of such firms such as e-steward certification by Basel action network in the USA, they also involved in public awareness programs; this review is based on collected information from various journal articles, websites including the technical note by Greenpeace international. Further, it analyzes the current progress on e-waste management worldwide.
Here’s an example to understand the scale of the problem, according to estimates by Ceylon Waste Management there are 7.6 Million CRT TVs and Monitors in Sri Lanka, and only 10% of that will be properly disposed. The remaining 90% will be around 67500 metric tons of CRTs, of which 8840 tons will be lead and 110 tons of arsenic. That’s a massive amount of poison that could leach into our ecosystem endangering both human and animal lives. Other methods must be employed to dispose of this waste.

What Happens to Devices at the End of Their Useful Life

Unfortunately, the majority of these electronic products end up in landfills, and just 12.5% of e-waste is recycled. According to a UN study, over 41.8 million tons of e-waste was discarded worldwide, with only 10%–40% percent of disposals appropriately done. Electronics are full of valuable materials, including copper, tin, iron, aluminum, fossil fuels, titanium, gold, and silver. Many of the materials used in making these electronic devices can be recovered, reused, and recycled—including plastics, metals, and glass. 

In a report, Apple revealed that it recovered 2,204 pounds of gold —worth $40 million—from recycled iPhones, Macs, and iPads in 2015. 

Benefits of E-Waste Recycling

Recycling e-waste enables us to recover various valuable metals and other materials from electronics, saving natural resources (energy), reducing pollution, conserving landfill space, and creating jobs. According to the EPA, recycling one million laptops can save the energy equivalent of electricity that can run 3,657 U.S. households for a year. Recycling one million cell phones can also recover 75 pounds of gold, 772 pounds of silver, 35,274 pounds of copper, and 33 pounds of palladium.
On the other end, e-waste recycling helps cut down on production waste. According to the Electronics TakeBack Coalition, it takes 1.5 tons of water, 530 lbs of fossil fuel, and 40 pounds of chemicals to manufacture a single computer and monitor. 81% of the energy associated with a computer is used during production and not during operation.

The Electronics Recycling Process

Electronics recycling can be challenging because discarded electronics devices are sophisticated devices manufactured from varying proportions of glass, metals, and plastics. The process of recycling can vary, depending on the materials being recycled and the technologies employed, but here is a general overview.
Collection and Transportation: Collection and transportation are two of the initial stages of the recycling process, including for e-waste. Recyclers place collection bins or electronics take-back booths in specific locations and transport the collected e-waste from these sites to recycling plants and facilities.
Shredding, Sorting, and Separation: After collection and transportation to recycling facilities, materials in the e-waste stream must be processed and separated into clean commodities that can be used to make new products. Efficient separation of materials is the foundation of electronics recycling. Shredding the e-waste facilitates the sorting and separation of plastics from metals and internal circuitry, and waste items are shredded into pieces as small as 100mm to prepare for further sorting.
A powerful overhead magnet separates iron and steel from the waste stream on the conveyor and then prepares it for sale as recycled steel. Further mechanical processing separates aluminum, copper, and circuit boards from the material stream—which now is mostly plastic. Water separation technology is then used to separate glass from plastics. The final step in the separation process locates and extracts any remaining metal remnants from the plastics to purify the stream further.
Preparation For Sale as Recycled Materials: After the shredding, sorting and separation stages have been executed, the separated materials are prepared for sale as usable raw materials for the production of new electronics or other products.

Electronics Recycling Associations

  • ISRI (the Institute of Recycling Industries): ISRI is the largest recycling industry association with 1600 member companies, of which 350 companies are e-waste recyclers.
  • CAER (Coalition for American Electronics Recycling): CAER is another leading e-waste recycling industry association in the U.S. with over 130 member companies operating around 300 e-waste recycling facilities altogether throughout the country.
  • EERA (European Electronics Recyclers Association): EERA is the leading e-waste recycling industry association in Europe.
  • EPRA (Electronic Products Recycling Association): EPRA is the leading e-waste recycling industry association in Canada.  

Current Challenges for Electronics Recycling Industry

The E-waste recycling industry has a significant number of challenges, which the primary one being exporting to developing nations. Exporting e-waste, including hazardous and toxic materials, is leading to serious health hazards for the workers working for dismantling electronic devices in countries without adequate environmental controls. Currently, 50%–80% of e-waste that recyclers collect is exported overseas, including illegally exported e-scrap, which is of particular concern. Overall, the inadequate management of electronics recycling in developing countries has led to various health and environmental problems.
Although the volume of e-waste is increasing rapidly, the quality of e-waste is decreasing. Devices are getting smaller and smaller, containing less precious metal. The material values of many end-of-life electronic and electrical devices have therefore fallen sharply. Electronics recyclers have suffered due to sagging global prices of recycled commodities, which have decreased margins and resulted in business closures.
Another problem is that as time goes onmany products are being made in ways that make them not easily recyclable, repairable, or reusable. Such design is often undertaken for proprietary reasons, to the detriment of overall environmental goals. Organizations such as ISRI have been active in promoting policies to broaden the range of authorized companies allowed to repair and refurbish smartphones to avoid their needless destruction. The current rate or level of e-waste recycling is definitely not sufficient. The current recycling rate of 15%–18% has much room for improvement as most e-waste still is relegated to the landfill.

Electronics Recycling Laws


Currently, 25 U.S. states have laws mandating statewide e-waste recycling, and several more states are working toward passing new legislation and improving the existing policy. State e-waste recycling laws cover 65% of the U.S. population, and some states, including California, Connecticut, Illinois, and Indiana, e-waste is banned from landfills. 



Potential Initiatives in Sri Lanka


Despite these initiatives, Sri Lanka is still far away in terms of e-waste management compared to most countries. Thus, existing bottlenecks need to be addressed in order for Sri Lanka to be a sustainable e-waste recycler. Strengthening policy and legislation is vital. Apart from the existing policy and regulation, the government could reinforce regulations, specifically on the imports of EEE. For instance, regulations should be enacted on discouraging the imports of used EEE, and to import equipment that has less hazardous elements; for example, LED/LCD monitors can replace CRT monitors, since CRT has more hazardous elements. In addition, suitable technology and skills need to be implemented in order to streamline the sustainable e-waste recycling system in the country. Proper mechanisms should also be developed to take out the informal market for e-waste recycling in the country. Improving the knowledge on e-waste within the community is crucial. Conducting programmes which highlight the social and ecological impacts of improper handling of e-waste, and the importance of disposing e-waste in proper places and in proper ways can be effective in raising public awareness. This can be provided through the public health staff, starting from grassroots levels. Also, the media can play a pivotal role in disseminating the message and making the mass community aware of the impacts of improper handling of e-waste as well as the proper mechanisms in recycling and its benefits.

‘E-waste’ should not be considered as normal ‘junk’. It may not impact you instantaneously, but could do so later in life. Therefore, much attention should be paid to this issue, considering the many health impacts that could be instigated by the e-waste around us.