Search This Blog

Sunday, May 22, 2016

Hydrographics Printing

Hydrographics Printing : HG Arts. Water Transfer Printing or Hydrographics (also known as hydro dipping, hydro imaging, fluid imaging, hydrograghic printing) is a 3D decorating process.

What is Water Transfer Printing?

Water Transfer Printing or Hydrographics (also known as hydro dipping, hydro imaging, fluid imaging, hydrograghic printing) is a 3D decorating process. Graphics such as carbon fibre, woodgrain, camouflage, geometrical patterns are applied to decorate the items.





The Hydrographics process is used worldwide to decorate a variety of items, from aeroplane interiors to very small items like cell phone cases. Films can be applied to all kind of materials including plastic, wood, fibreglass, metal, and ceramics. For the most part, if the item can be dipped in water, the water transfer printing process can be applied.



This process utilises a water-soluble film that contains the printed designs. Once an activator has been applied, the film dissolves and leaves the ink on the surface of the water. The process requires good preparation and the item to be decorated is firstly coated with a primer. After the primer dries, a base coat paint is applied to match with the pattern. So, for example, woodgrain prints often utilise a brown base coat and many camouflage patterns use specific base colour.



After the base colour is applied, the item is ready for the water transfer printing process. As previously mentioned, the activator HGA-EM014 is used to activate the film. Now, the item can be immersed into the water and the ink wraps around it. It is then washed and protected with a clear topcoat.



1. What does it cost?

Water Transfer Printing is the most advanced cost-effective process, which overcomes problems faced by traditional printing methods, such as conversion coating, screen printing, transfer printing, and hot printing.



2. Is Water Transfer Printing / Hydrographics durable?

Some of our biggest customers are automotive manufacturers who demand the highest standards of quality and durability on their products. The ink from the hydrographic film is very durable itself. However, a protective clear coat needs to be applied to protect decorated items to ensure that they last for years.



3. Can items that are not correctly printed be reprinted?

Yes, items that are not decorated to customer satisfaction can be reprinted. The decorated piece needs to be sanded and painted again. After that, the piece will be ready again for the printing process.



4. How is the hydrographic film supplied?

Hydrographic film comes in three different widths
(50 cm wide X any length)
(80-90 cm wide X any length)
(100 cm wide X any length)
Please refer to our online film gallery to determine the desired width of film.



5. What types of items can be printed?

A wide variety of flat or 3-D items and materials can be decorated with this process. (plastics, metal, wood etc.)



6. How scratch-resistant is the final product?

The clear coat recommended is the same as is used on automotive exteriors. Resistant to UV, scratches, etc.



7. Do I have to spray a decorated part with clear coat?

The clear coat is a very important step of the process. It protects the items from scratching and gives them durability.



8. At what temperature and humidity is it best to store the hydrographic film?

The hydrographic film is printed on polyvinyl alcohol (PVA) and it is very sensitive to humidity and temperature. You must store the film appropriately to ensure long life, durability and proper decorating. The hydrographic film must be stored in a humidity and temperature controlled room.
Room humidity must be below 60% and room temperature between 20 and 25 degrees Celsius (68º to 77º Fahrenheit)



9. How should I set up my Water Transfer Printing facility?

Before setting up your production plant, many things need to be considered. Size of items to be printed and amount of items to be printed are the most important. After answering these two questions you will know the approximate space needed to accommodate fixtures, hydrographic films and equipment. Please check our Equipment Section and download the PDF documents for full information.



10. How do I apply the clear coat?

Use a high quality clear coat to protect the decorated item. You can use matt, satin or gloss finish. The clear coat should be very durable to last over time and protect against scratches.



11.How much power do I need to set up a Water Transfer Printing facility?

In order to determine how much power is needed for the selected equipment, we invite you to visit our Equipment Section and download all the specific documentation.



12. What type of spray booth do you recommend?

We recommend an enclosed spray booth or industrial paint booth for most applications.



13. How do I dry my decorated parts?

After washing, the decorated items must dry out before applying the protective clear coat. This step can be accomplished with a heated room and circulating air, or just by normal air drying. Make sure the decorated item is completely dry before proceeding to the clear coating. Other options are thermal, flash drying and circulating air or blow drying.



14. How long does it take to create a custom hydrographic film?

Artwork is taken through the cylinder engraving process to produce the required film within 4-6 weeks.

Saturday, May 21, 2016

வேதத்தில் மறுபிறப்பு பற்றிய கருத்து


அதர்வவேதம்
முண்டக உபநிடதம்

 யாகத்தையும் சேவையையும் மேலானதாக நினைக்கும் அறிவீலிகள். இவற்றிற்கும் மேலானதை அறிய மாட்டார்கள். இவர்கள் புண்ணியத்தால் அடையப்படும் உயர்ந்த சுவர்க்கத்தை அடைந்து அதன் பலனை அனுபவித்து மீண்டும் இந்த உலகத்தை அடைந்து கீழான பிறவி எடுக்கிறார்கள்.

யஜுர்வேதம் கட உபநிடதம்
1.2.6. பக்குவமடையாத, கவனக்குறைவுடன் கூடிய, செல்வம் மீதான மோகத்தால் அறிவை இழந்தவனக்கு மேலான லோகத்திற்கான ஸாதனை விளங்காது, இவ்வளவுதான் உலகம் இதற்கு மேல் ஒன்றும் இல்லை என்று நினைப்பவர்கள் மீண்டும் மீண்டும் பிறந்து இறக்கிறார்கள்.

2.2.7.அவரவர் கர்மத்திற்கேற்பவும் அவரவர்களுடைய உபாஸனைக்கேற்பவும் சில ஜீவர்கள் மனித அல்லது மிருக உடலை எடுப்பதற்கான கர்பத்தை அடைகிறார்கள். வேறுசில ஜீவர்கள் மரம் முதலிய உடலை அடைகிறார்கள்
கைவல்ல உபநிடதம்.
14. முற்பிறவியில் செய்த கர்மபலனின் காரணமாக அதே ஜீவன் மீண்டும் கனவு காண்கிறான். பிறகு விழித்துக்கொள்கிறான். அந்த ஜீவன் பினவுபடாத ஞான ஸ்வரூபமான ஆனந்த மயமான அனைத்திற்கும் ஆதாரமாகவும் உள்ளான்.
சாமவேதம்-கேனோபநிடதம்
2.5. இந்த பிறவியிலேயே ஒருவன் பிரம்மத்தை அறிவானாகில் வாழ்க்கைக்கு ஓர் அர்த்தமுண்டு, மாறாக இப்பிவியில் ஒருவன் பிரம்மத்தை அறியாவிடில், அவன் அடையும் நஷ்டம் மிகப்பெரியது, தீரர்கள், ஒவ்வொரு ஜீவனிடத்திலும் ப்ரம்மத்தை அறிந்து, இந்த உடம்பிலிருந்து நீங்கிய பின் மரணமற்றவர்களாக ஆகிறார்கள்..


வேதம் என்ன சொல்கிறது பார்ப்போம்

3.4 எந்த ப்ரம்மம் அனைத்து உயிரினங்களாக விளங்குகிறதோ அதுவே இந்த ஆத்மா. இவ்விதம் அறிகின்ற ஞானி பேச்சற்றவன் ஆகிறான். இவன் தன்னிடத்தில் மகிழ்ந்திருக்கிறான். அந்த ஒரே இறைவனே அனைவரின் இதயத்திலும் ஆன்மாவாக இருக்கிறார். அதர்வண வேதம்…….
2.10 மாசற்ற உடலற்ற ப்ரம்மம் மேலான ஒளி பொருந்திய இருப்பிடமாகிய மனத்தில் உள்ளது. அந்த ப்ரம்மம் துாய்மையானது. எது ஒளிக்கெல்லாம் ஒளியாய் உள்ளதோ அந்த ப்ரம்மத்தை ஆத்மாவை அறிந்தவர்கள் அனைத்தையும் அறிகிறார்கள்
(அதர்வண வேதம்…….முண்டக உபநிடதம் )
1.3.12.எல்லா உயிரினங்களுக்குள்ளும் மறைந்திருக்கின்ற இந்த ஆத்மா தெளிவாக விளங்குவதில்லை. கூர்மையான, நுட்பமான புத்தியின் மூலம் நுண்ணிய பார்வை உடையவர்களால் இந்த அத்மா அறியப்படுகிறது.
(யஜுர்வேதம்……கட உபநிடதம்)
அனைத்து உயிர்களுக்குள்ளும், மற்றும் அனைத்து இடங்களிலும் இறைவன் ஆன்மாவாக இருக்கிறார் என்கின்றன ஆன்மா பற்றி வேதங்கள் என்ன கூறுகின்றன? ஆத்மாவுக்கு பிறப்பில்லை, இறப்பில்லை, உருவமில்லை, அது வளர்வதில்லை, தேய்வதில்லை, அதை சாதாரண கண்களால் காணமுடியாது.
அப்படியென்றால் இந்துக்கள் எதை அனைத்து இடங்களிலும் வணங்குகிறார்கள்? வேதங்கள் யாரை இறைவன் என்று சொல்லுகின்றனவோ அந்த ஒரே இறைவனையே இந்துக்கள் அனைத்து இடங்களிலும் வணங்குகிறார்கள். மனிதனை வணங்கும்போது மனித உடலையைா வணங்குகிறார்கள்? மனிதன் என்றால் யார்? நாம் மனிதனை ஆன்மாவாக பார்க்கிறோம். ஆன்மா இந்த உடல் அழிந்தாலும் வேறு உடலை எடுக்கிறது. உண்மையான மனிதன் என்பவன் ஆன்மா, உடலும் மனமும் அவன் மேல் போர்த்தப்பட்ட போர்வைகள், உடலும் மனமும் அழிந்தாலும் உண்மை மனிதன் அழிவதில்லை. அந்த உண்மை மனிதனையே நாம் வணங்குகிறோம் மனைவி கணவனிடம் அன்புசெலுத்துவது கணவனுக்காக அல்ல, ஆன்மாவிற்காகவே, அவள் கணவனின் ஆன்மாவையே நேசிக்கிறாள். அதேபோல் கணவனும் மனைவியிடம் அன்பு செலுத்துவது மனையில் உடலையல்ல மனைவின் ஆன்மாவை நேசிக்கிறான். ஆன்மாவின் மூலமாகவே குழந்தைகளையும் நேசிக்கவேண்டும். அதேபோல் இந்த பிரபஞ்சத்தில் உள்ள அனைத்தையும் ஆ்மாவின் மூலமா நேசிக்கவேண்ம். ஆன்மாவே அனைத்துமாகியிருக்கிறது.
(பிருஹ தாரண்யக உபநிடதம் 2.4)
வேதங்கள் இந்த உலகிலுள்ள அனைத்து பொருட்களிலும் தூல மற்றும் சூட்சும நிலையை கடந்த ஆன்மா இருப்பதாக கூறுகின்றன. இந்த ஜடப்பொருட்களின் உள்ளே எப்போதும் இயங்கிக்கொண்டிருக்கும் ஆன்மா உள்ளது. மனிதன் போதிய அளவு மனத் தூய்மை உள்ளவனாக இருந்தால் இந்த ஜடத்தின் உள்ளே உருவமற்றதாக இருக்கும் ஆன்மாவைக்காணமுடியும் என்பது வேதவாக்கு. ஆகவே ஒரு இந்து தெரிந்தோ தெரியாமலோ எங்கும் நிறைந்திருக்கும் எப்போதும் மாறாத இறைவனைத்தான் வணங்குகிறானே தவிர கணத்திற்கு கணம் மாறிக்கொண்டிருக்கும் ஜடப்பொருளை வணங்கவில்லை. வணக்கம் எப்போதும் ஏக இறைவனுக்குத்தான். அந்த இறைவன்தான் எனக்குள்ளும் உனக்குள்ளும் அனைத்து இடங்களிலும் இருக்கிறார்.

மறுபிறவி பற்றி பகவத்கீதா


2.13. ஆத்மாவுக்கு இவ்வுடலில் எங்ஙனம் பிள்ளைப்பிராயமும் இளமையும் மூப்பம் தொன்றுகின்றனவோ அவ்வாறே மற்றொரு சரீரப்பிறப்பும் தோன்றுகிறது. தீரன் சாவை எண்ணி கலங்க மாட்டான்..
2.22 ஆத்மா பிறப்பதும் இல்லை எக்காலத்தம் இறப்பதும் இல்லை.
இவன் ஒருமுறை இருந்து பின்னர் இல்லாது போவதும் இல்லை. இவன் பிறப்பற்றவன் இறப்பற்றவன். உடப்பு அழிந்து போனாலும் இவன் அழிவதில்லை.
2.23 நைந்த துணிகளைக்களைந்து விட்டு மனிதன் புது துணிகளை போடுவது போல .ஆன்மா நைந்த உடலைக் களைந்து புது உடலை எடுக்கிறது.
2.41ஆசைவயப்பட்டவர்கள் சொர்க்க இன்பத்தில் மதிமயங்கியவர்களாய் பல கிரியைகளைச் செய்கிறார்கள்.
இவர்கள் சொல்லுவதைக்கேட்டு மதிமயங்குவோருக்கு நிச்சயபுத்தி இல்லை. அர்ஜுனா நீ நிச்சய புத்தியுள்ளவனாக இரு
4.5.அர்ஜுனா எனக்கு பல ஜன்மங்கள் கழிந்திருக்கின்றன. உனக்கும் பல ஜன்மங்கள் கழிந்திருக்கின்றன. நான் அவற்றையெல்லாம் அறிவேன் நீ அறியவில்லை.
6.35.மனத்தை கட்டுப்படுத்துவது மிகவும் கடினம். அது எப்போதும் சலனப்படுவது. ஆனாலும் பிற்சியாலும் பற்றற்ற நிலையாலும் மனத்தை கட்டுப்படுத்தலாம். மனத்தை கட்டுப்படுத்தியவனே யோகம் அடைகிறான்.
6.37. அர்ஜுனனின் சந்தேகம்
இவ்வாறு மனத்தை கட்டுப்படுத்த முயற்சி செய்து அதில் ஒருவன் வெற்றிபெற முடியாமல் இறந்து பொனால் என்ன ஆவான்?
6.41. யோகத்தில் தவறியவர்கள் புண்ணியம் செய்தவர்களின் உலகத்தில் நீண்டநாள் வசித்து பின்னர். நல்ல மனம் உள்ள செல்வந்தர் வீட்டில் மீண்டும் பிறக்கிறான். அல்லது புத்திமான்களின் குலத்திலோ அல்லது யோகிகளின் குலத்திலோ பிறக்கிறான் தனது பழைய ஜென்ம பலனால் மீண்டும் யோகத்தை அடைய முயற்சிக்கிறான்
6.44 பாவம் அற்றவன் கடினமுயற்சி செய்தால் பல பிறவிகளில் உழைத்து பெறவேண்டிய பரகதியை(யோகத்தை) இப்பிறவியிலேயே அடைகிறான்.
யோகம் என்பது இறைவனுடன் ஒன்றுபடுதல்(முக்தி) யோகம் என்பது சித்த விரத்தி நிரோத (பதஞ்சலி யோக சூத்திரம்) சித்தத்தில் எழும் எண்ணங்களை அடக்கினால் யோகம் கைகூடுகிறது
8.15 சித்தி பெற்ற மகாத்மாக்கள் நிலையற்றதும் துன்பத்தின் உறைவிடமான மறுபிறப்பை மீண்டும் பெறுவதில்லை.
8.16 பிரம்மலோகம் வரையுள்ள உலகில் வாழ்பவர்களுக்கு மறுபிறப்பு உண்டு. என்னை அடைந்தவர்களுக்கு(முக்தி பெற்றவர்களுக்கு மறுபிறப்பு இல்லை.
=============
வேதம் பற்றிய கருத்து
வேதம் என்றால் அறிவு இந்த அறிவு என்றென்னும் இருந்துகொண்டே இருக்கிறது. புவியீர்ப்பு விசையை நியுட்டன் கண்டுபிடிப்பதற்கு முன்பே அந்த புவியீர்பு விசை இருக்கிறது. நியுட்டன் அதை கண்டுபிடிக்காவிட்டாலும் அது என்றும் இருந்து கொண்டே இருக்கும். ஆகவே புத்தகத்தில் எழுதப்படவை மட்டுமே வேதம் மற்றவை வேதம் அல்ல என்பது தவறான கருத்து. வேதாந்தம் என்றால் இறைவனைப்பற்றிய அறிவு (ப்ரம்மஞானம்.) குறிப்பாக இறைவனை நேருக்கு நேர் கண்டவர்கள் இறைவனைப்பற்றி கூறும் வார்த்தைகளே வேதாந்தம். இந்த இறை அறிவு என்றும் இருக்கிறது. அது என்றென்றும் இருக்கும் இந்த உலகம் தோன்றயது முதல் வேதாந்தம் இருக்கிறது. இறைவனை காண்பவர்கள் ஏற்கனவே இருக்கும் வேதத்தை மக்களிடம் சொல்கிறார்கள். ரிஷிகள் என்பவர்கள் இறைவனை நேரில் கண்டவர்கள். இவர்கள் வேதத்தை புதிதாக எழுதவில்லை. ஏற்கவே இருப்பதை எடுத்துச்சொன்னார்கள்....

The Nucleus


The nucleus, that dense central core of the atom, contains both protons and neutrons. Electrons are outside the nucleus in energy levels. Protons have a positive charge, neutrons have no charge, and electrons have a negative charge.
A neutral atom contains equal numbers of protons and electrons. But the number of neutrons within an atom of a particular element can vary. Atoms of the same element that have differing numbers of neutrons are called isotopes.
The following diagram shows the symbolization chemists use to represent a specific isotope of an element. In this diagram:
  • X represents the chemical symbol of the element found on the periodic table.
  • Z represents the atomic number.
  • A represents the mass number (also called the atomic weight).
    image0.jpg
Suppose you want to represent uranium. You can refer to a periodic table or a list of elements, and find that the symbol for uranium is U, its atomic number is 92, and its mass number is 238.
So, you can represent uranium as shown here:
image1.jpg
You know that uranium has an atomic number of 92 (number of protons) and mass number of 238 (protons plus neutrons). So if you want to know the number of neutrons in uranium, all you have to do is subtract the atomic number (92 protons) from the mass number (238 protons plus neutrons). The resulting number shows that uranium has 146 neutrons.
But how many electrons does uranium have? Because the atom is neutral (it has no electrical charge), there must be equal numbers of positive and negative charges inside it, or equal numbers of protons and electrons. So there are 92 electrons in each uranium atom.
The nucleus is very, very small and very, very dense when compared to the rest of the atom. Not only is the nucleus very small, but it also contains most of the mass of the atom. In fact, for all practical purposes, the mass of the atom is the sum of the masses of the protons and neutrons.
The protons of an atom are all crammed together inside the nucleus. Each proton carries a positive charge, and like charges repel each other. However, forces in the nucleus counteract this repulsion and hold the nucleus together. (Physicists call these forces nuclear glue. But sometimes this “glue” isn’t strong enough, and the nucleus does break apart. This process is calledradioactivity.)

Water and fire aren’t always opposites. Here is an example.


Physicists discover a new form of light


Physicists from Trinity College Dublin’s School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light.
One of the measurable characteristics of a beam of light is known as angular momentum. Until now, it was thought that in all forms of light the angular momentum would be a multiple of Planck’s constant (the physical constant that sets the scale of quantum effects).

Now, recent PhD graduate Kyle Ballantine and Professor Paul Eastham, both from Trinity College Dublin’s School of Physics, along with Professor John Donegan from CRANN, have demonstrated a new form of light where the angular momentum of each photon (a particle of visible light) takes only half of this value. This difference, though small, is profound. These results were recently published in the online journal Science Advances.
Commenting on their work, Assistant Professor Paul Eastham said: “We’re interested in finding out how we can change the way light behaves, and how that could be useful. What I think is so exciting about this result is that even this fundamental property of light, that physicists have always thought was fixed, can be changed.”
Professor John Donegan said: “My research focuses on nanophotonics, which is the study of the behaviour of light on the nanometer scale. A beam of light is characterised by its colour or wavelength and a less familiar quantity known as angular momentum. Angular momentum measures how much something is rotating. For a beam of light, although travelling in a straight line it can also be rotating around its own axis. So when light from the mirror hits your eye in the morning, every photon twists your eye a little, one way or another.”
“Our discovery will have real impacts for the study of light waves in areas such as secure optical communications.”
Professor Stefano Sanvito, Director of CRANN, said: “The topic of light has always been one of interest to physicists, while also being documented as one of the areas of physics that is best understood. This discovery is a breakthrough for the world of physics and science alike. I am delighted to once again see CRANN and Physics in Trinity producing fundamental scientific research that challenges our understanding of light.”
To make this discovery, the team involved used an effect discovered in the same institution almost 200 years before. In the 1830s, mathematician William Rowan Hamilton and physicist Humphrey Lloyd found that, upon passing through certain crystals, a ray of light became a hollow cylinder. The team used this phenomenon to generate beams of light with a screw-like structure.
Analysing these beams within the theory of quantum mechanics they predicted that the angular momentum of the photon would be half-integer, and devised an experiment to test their prediction. Using a specially constructed device they were able to measure the flow of angular momentum in a beam of light. They were also able, for the first time, to measure the variations in this flow caused by quantum effects. The experiments revealed a tiny shift, one-half of Planck’s constant, in the angular momentum of each photon.
Theoretical physicists since the 1980s have speculated how quantum mechanics works for particles that are free to move in only two of the three dimensions of space. They discovered that this would enable strange new possibilities, including particles whose quantum numbers were fractions of those expected. This work shows, for the first time, that these speculations can be realised with light.
http://3tags.org/ar…/physicists-discover-a-new-form-of-light

Minister KTR speaking at the launch of Apple Development Centre



Watch Telangana IT Minister K. T. Rama Rao, popularly known as KTR, addressing at Apple Mapping development centre, which was inaugurated by Apple CEO Tim Cook in Hyderabad. The minister, while making a welcoming note to Tim Cook, said that the state government has been waiting for this occasion. The minister, while highlighting the new IT policy of the state has made it clear that state government will co-operate the companies in a big manner, encouraging their skills. - 

Friday, May 20, 2016

Battleship Potemkin


Commissioned to commemorate the failed 1905 revolution against the Tsar, Battleship Potemkin is a 1925 Russian silent masterpiece directed by Sergei M. Eisenstein and considered one of the most influential and greatest films ever made.
Presented in five acts, Battleship Potemkim distills the 1905 uprising against the czar in one exemplary story of the mutiny on board the battleship Potemkin. As revolution is taking place in Russia, some of the crew of the Potemkin is debating whether they should do their part. As officers treat them cruelly and they are given maggot-infested meat rations, the tension on board the ship rises and when some of the men refuse to eat their food, they are charged of insubordination and sentenced to a firing-squad. Their fellow crew members, however, refuse to carry out these order and so the mutiny begins. The crew kill their officers and make their way to the port of Odessa, where they are greeted as heroes by the people there but this also results in a regiment of Cossacks being sent down to bring the mounting revolution under control. As they brutally kill anyone who stands up to them, the crew of the Potemkin decide to use the ship's firepower against their adversaries whilst other warships make their way to Odessa to crush the revolt.
Sergei Eisenstein, a Soviet filmmaker, film teacher and film theorist, made Battleship Potemkim as a revolutionary propaganda film whilst also applying his theories of "intellectual montage", leading to one of the most famous sequences in cinema history with the "Odessa steps scene" and changing the way film would be edited for basically every film that followed. Using rhythm and rapid cuts between the soldiers boots marching down the stairs and their victims, amongst which an old woman being shot in the eye and a mother losing her baby and carriage causing it to roll down the stairs, the scene was unlikely anything which had come before it and it became the blueprint for a whole new way for cinema to evoke emotion. Whilst only four minutes long, the sequence feels much longer due to its impact and is perhaps one of the most imitated scenes to have ever been filmed, perhaps most famously and blatantly in Brian De Palma's The Untouchables. Battleship Potemkin was voted the greatest film of all time at the Brussels World's Fair in 1958 and has been in Sight & Sound's top ten greatest films ever for about sixty years straight. The influence of the film cannot be understated and this is absolute must-see cinema for any serious film lover. A masterpiece.

இதுவரை தெரிந்திராத ‘சரஸ்வதி மூலிகை’ அதாவது வல்லாரையின் மருத்துவக் குணங்கள்


மூலிகைகள் என்ற இயற்கைக் கொடையை ஏராளமாகப் பெற்றிருக்கிறோம். நம்மைச் சுற்றி சாதாரணமாகக் காணப்படும் தாவரங்கள், அசாதாரண மருத்துவ குணங்களைக் கொண்டவை. அந்த வரிசையில் வரும் வல்லாரை வழங்கும் நன்மைகள் அனேகம். அவை பற்றி…
* வல்லாரை இலையை நிழலில் உலர்த்திப் பொடித்து, பாலில் கலந்து தினமும் இரவு படுக்கைக்குச் செல்லும்முன் அருந்தி வந்தால் வயிற்றுப் பூச்சிகள் அழிந்துபோகும்.
* வல்லாரை இலையை நன்கு சுத்தம் செய்து, அதனுடன் சின்ன வெங்காயம், பூண்டு, மிளகு சேர்த்து சட்னியாக அரைத்து 48 நாட்கள் தொடர்ந்து சாப்பிட்டு வந்தால் மாணவ, மாணவிகளுக்கு ஏற்படும் மூளைச் சோர்வை நீக்கி, ஞாபக மறதியைக் குணமாக்கும். ஆனால் வல்லாரைச் சட்னியில் புளியை அறவே தவிர்க்க வேண்டும். உப்பு சேர்த்துக்கொள்ளலாம்.
* வல்லாரை இலையுடன் சம அளவு கீழா நெல்லி இலை சேர்த்து அரைத்து காலையில் வெறும் வயிற்றில் சாப்பிட்டு வந்தால் நீர் எரிச்சல் தீரும்.
* குழந்தைகளுக்குத் தினமும் 10 வல்லாரை இலைகளை பச்சையாக மென்று சாப்பிடக் கொடுத்தால் மூளை நரம்புகள் வலுப்பெறும். தொண்டையில் ஏற்படும் அவஸ்தைகள் குறையும்.
* ஞாபக சக்தியைத் தூண்டும் வல்லாரையை ‘சரஸ்வதி மூலிகை’ என்றும் அழைக்கின்றனர்.
* வல்லாரை, ரத்த சோகையைப் போக்கி ரத்தத்தில் ஹீமோகுளோபின் எண்ணிக்கையை அதிகரிக்கும்.
* வல்லாரைப் பொடியைக் கொண்டு பல் துலக்கினால் பல்லில் உள்ள கறைகளைப் போக்கும். பல் ஈறுகளைப் பலப்படுத்தும்.
* இளைப்பு, இருமல், தொண்டைக்கட்டு போன்றவற்றை வல்லாரை போக்கும். காசநோயாளிகளுக்கு வல்லாரை சிறந்த மருந்தாகும்.
* வல்லாரை, கண் எரிச்சல், கண்ணில் நீர் வடிதல் போன்றவற்றைப் போக்கி கண் நரம்புகளுக்கு நன்மை அளிக்கும்.
* நீரிழிவு நோயாளிகள் வல்லாரைக் கீரை உண்பது நல்லது. இக்கீரை மலச் சிக்கலைப் போக்கி, வயிற்றுப் புண், குடல்புண்ணை ஆற்றுகிறது.
* யானைக்கால் வியாதியால் பாதிக்கப்பட்டவர்கள் வல்லாரை இலையை அரைத்துக் கட்டினால் நோயின் தாக்கம் குறையும். அதுபோல விரை வீக்கம், வாயு வீக்கம், கட்டிகளின் மீது பூசி வந்தால் குணம் கிட்டும்.
* வல்லாரை இலையை முறைப்படி எண்ணையாக்கி, தினமும் தலையில் தேய்த்து வந்தால் உடல் சூடு தணியும். உடல் எரிச்சல் நீங்கும்

There were 40 Neolithic stone temples on Malta. The ancient Maltese built the temples 1,000 years before the pyramids.


Study finds even positive media coverage of Malala Yousafzai contains sexist assumptions about Muslim women

"The study analysed more than 140,000 words of coverage of activist Yousafzai in the nine months after she was attacked by the Pakistani Taleban. It found the fearless and eloquent campaigner was reduced to a passive victim by the British media. In some cases, she was simply referred to as "Shot Pakistani Girl."
The study was carried out by Rosie Walters, a postgraduate researcher at the University of Bristol's School of Sociology, Politics and International Studies. She said: "The West has often been guilty of portraying women in Muslim countries as passive and as victims. Malala Yousafzai challenges that stereotype in every way, which is why I wanted to analyse the coverage of her.
"She even said herself that she doesn't want to be portrayed as the young woman who was shot by the Taleban, but rather as the young woman who bravely fought for her rights. Sadly, the findings of this study show that the British media is far from granting that request."

Thanks :http://phys.org/news/2016-05-positive-media-coverage-malala-yousafzai.html

Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle


Mark P Mattson

Abstract [Open Access Paper]
Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.

Magical precipitate of Chemistry

SHOW of PRECIPITATIONS in the beautiful metallic Hydroxides XIV ,we find a parade of metallic hydroxides precipitates from the addition of sodium hydroxide solution (NaOH) to several test tubes containing each a metal nitrate. The bulky texture characteristic of the hydroxides is very noticeable.

This type of reaction is used to discover the identity of the metal ion present in the solution being analyzed based on the colors and textures unique to each of the precipitates.
It is worth noting that the cobalt hydroxide precipitates with distinct color of solution: in the precipitate, Co2 + ion has no water molecules in their sphere of coordination, while in solution have exactly the ion [Co (H2O) 6] 2 +, hexa-aquocobalto (II).

The precipitate of Mn (OH) 2, white, rust quickly aired the MnO2 (or MnO (OH) 2). The solution of Fe (II) must be freshly prepared to prevent the precipitate contains a mixture of hydroxides of Fe (II) and Fe (III).
Avoid excess NaOH because some hydroxides may redissolve due to the formation of hidroxicomplexos (case of lead, zinc, chromium and aluminum in this posting).
So, with this show that only the chemistry can provide, we wish you all a superbv morning , thanks for your company



Precipitation Titration
Precipitation titration known as Mohr's Method that is was used to determine the chloride concentration .
This method is based on two reactions that yield ionic compounds of limited solubility.
First, the sample solution is titrated with silver nitrate, which upon addition, forms a white precipitate of silver chloride (AgCl).
The endpoint occurs when all the chloride ions have precipitated. Any additional silver ions then react with the chromate ions of the indicator, potassium chromate, to produce a red-brown precipitate of silver chromate, seen in the photo (Ag2CrO4).

Car & Marine Engine Parts

The core of the engine is the cylinder, with the piston moving up and down inside the cylinder. The engine described above has one cylinder. That is typical of most lawnmowers, but most cars have more than one cylinder (four, six and eight cylinders are common). In a multi-cylinder engine, the cylinders usually are arranged in one of three ways: inlineV or flat (also known as horizontally opposed or boxer), as shown in the following VIDEO.
Different configurations have different advantages and disadvantages in terms of smoothness, manufacturing cost and shape characteristics. These advantages and disadvantages make them more suitable for certain vehicles.
Let's look at some key engine parts in more detail.

Spark plug

The spark plug supplies the spark that ignites the air/fuel mixture so that combustion can occur. The spark must happen at just the right moment for things to work properly.

Valves

The intake and exhaust valves open at the proper time to let in air and fuel and to let out exhaust. Note that both valves are closed during compression and combustion so that the combustion chamber is sealed.

Piston

A piston is a cylindrical piece of metal that moves up and down inside the cylinder.

Piston rings

Piston rings provide a sliding seal between the outer edge of the piston and the inner edge of the cylinder. The rings serve two purposes:
  • They prevent the fuel/air mixture and exhaust in the combustion chamber from leaking into the sump during compression and combustion.
  • They keep oil in the sump from leaking into the combustion area, where it would be burned and lost.
Most cars that "burn oil" and have to have a quart added every 1,000 miles are burning it because the engine is old and the rings no longer seal things properly.

Connecting rod

The connecting rod connects the piston to the crankshaft. It can rotate at both ends so that its angle can change as the piston moves and the crankshaft rotates.

Crankshaft

The crankshaft turns the piston's up and down motion into circular motion just like a crank on a jack-in-the-box does.

Sump

The sump surrounds the crankshaft. It contains some amount of oil, which collects in the bottom of the sump (the oil pan).

Next, we'll learn what can go wrong with engines.

Creativity


New Support for Alternative Quantum View


An experiment claims to have invalidated a decades-old criticism against pilot-wave theory, an alternative formulation of quantum mechanics that avoids the most baffling features of the subatomic universe.
Of the many counterintuitive features of quantum mechanics, perhaps the most challenging to our notions of common sense is that particles do not have locations until they are observed. This is exactly what the standard view of quantum mechanics, often called the Copenhagen interpretation, asks us to believe. Instead of the clear-cut positions and movements of Newtonian physics, we have a cloud of probabilities described by a mathematical structure known as a wave function. The wave function, meanwhile, evolves over time, its evolution governed by precise rules codified in something called the Schrödinger equation. The mathematics are clear enough; the actual whereabouts of particles, less so. Until a particle is observed, an act that causes the wave function to “collapse,” we can say nothing about its location. Albert Einstein, among others, objected to this idea. As his biographer Abraham Pais wrote: “We often discussed his notions on objective reality. I recall that during one walk Einstein suddenly stopped, turned to me and asked whether I really believed that the moon exists only when I look at it.”
But there’s another view — one that’s been around for almost a century — in which particles really do have precise positions at all times. This alternative view, known as pilot-wave theory or Bohmian mechanics, never became as popular as the Copenhagen view, in part because Bohmian mechanics implies that the world must be strange in other ways. In particular, a 1992 study claimed to crystalize certain bizarre consequences of Bohmian mechanics and in doing so deal it a fatal conceptual blow. The authors of that paper concluded that a particle following the laws of Bohmian mechanics would end up taking a trajectory that was so unphysical — even by the warped standards of quantum theory — that they described it as “surreal.”

Nearly a quarter-century later, a group of scientists has carried out an experiment in a Toronto laboratory that aims to test this idea. And if their results, first reported earlier this year, hold up to scrutiny, the Bohmian view of quantum mechanics — less fuzzy but in some ways more strange than the traditional view — may be poised for a comeback.
Saving Particle Positions
Bohmian mechanics was worked out by Louis de Broglie in 1927 and again, independently, by David Bohm in 1952, who developed it further until his death in 1992. (It’s also sometimes called the de Broglie–Bohm theory.) As with the Copenhagen view, there’s a wave function governed by the Schrödinger equation. In addition, every particle has an actual, definite location, even when it’s not being observed. Changes in the positions of the particles are given by another equation, known as the “pilot wave” equation (or “guiding equation”). The theory is fully deterministic; if you know the initial state of a system, and you’ve got the wave function, you can calculate where each particle will end up.
That may sound like a throwback to classical mechanics, but there’s a crucial difference. Classical mechanics is purely “local” — stuff can affect other stuff only if it is adjacent to it (or via the influence of some kind of field, like an electric field, which can send impulses no faster than the speed of light). Quantum mechanics, in contrast, is inherently nonlocal. The best-known example of a nonlocal effect — one that Einstein himself considered, back in the 1930s — is when a pair of particles are connected in such a way that a measurement of one particle appears to affect the state of another, distant particle. The idea was ridiculed by Einstein as “spooky action at a distance.” But hundreds of experiments, beginning in the 1980s, have confirmed that this spooky action is a very real characteristic of our universe.
In the Bohmian view, nonlocality is even more conspicuous. The trajectory of any one particle depends on what all the other particles described by the same wave function are doing. And, critically, the wave function has no geographic limits; it might, in principle, span the entire universe. Which means that the universe is weirdly interdependent, even across vast stretches of space. The wave function “combines — or binds — distant particles into a single irreducible reality,” as Sheldon Goldstein, a mathematician and physicist at Rutgers University, has written.
The differences between Bohm and Copenhagen become clear when we look at the classic “double slit” experiment, in which particles (let’s say electrons) pass through a pair of narrow slits, eventually reaching a screen where each particle can be recorded.
When the experiment is carried out, the electrons behave like waves, creating on the screen a particular pattern called an “interference pattern.” Remarkably, this pattern gradually emerges even if the electrons are sent one at a time, suggesting that each electron passes through both slits simultaneously.

Those who embrace the Copenhagen view have come to live with this state of affairs — after all, it’s meaningless to speak of a particle’s position until we measure it. Some physicists are drawn instead to the Many Worlds interpretation of quantum mechanics, in which observers in some universes see the electron go through the left slit, while those in other universes see it go through the right slit — which is fine, if you’re comfortable with an infinite array of unseen universes.
By comparison, the Bohmian view sounds rather tame: The electrons act like actual particles, their velocities at any moment fully determined by the pilot wave, which in turn depends on the wave function. In this view, each electron is like a surfer: It occupies a particular place at every specific moment in time, yet its motion is dictated by the motion of a spread-out wave. Although each electron takes a fully determined path through just one slit, the pilot wave passes through both slits. The end result exactly matches the pattern one sees in standard quantum mechanics.
For some theorists, the Bohmian interpretation holds an irresistible appeal. “All you have to do to make sense of quantum mechanics is to say to yourself: When we talk about particles, we really mean particles. Then all the problems go away,” said Goldstein. “Things have positions. They are somewhere. If you take that idea seriously, you’re led almost immediately to Bohm. It’s a far simpler version of quantum mechanics than what you find in the textbooks.” Howard Wiseman, a physicist at Griffith University in Brisbane, Australia, said that the Bohmian view “gives you a pretty straightforward account of how the world is…. You don’t have to tie yourself into any sort of philosophical knots to say how things really are.”
But not everyone feels that way, and over the years the Bohm view has struggled to gain acceptance, trailing behind Copenhagen and, these days, behind Many Worlds as well. A significant blow came with the paper known as “ESSW,” an acronym built from the names of its four authors. The ESSW paper claimed that particles can’t follow simple Bohmian trajectories as they traverse the double-slit experiment. Suppose that someone placed a detector next to each slit, argued ESSW, recording which particle passed through which slit. ESSW showed that a photon could pass through the left slit and yet, in the Bohmian view, still end up being recorded as having passed through the right slit. This seemed impossible; the photons were deemed to follow “surreal” trajectories, as the ESSW paper put it.
The ESSW argument “was a striking philosophical objection” to the Bohmian view, said Aephraim Steinberg, a physicist at the University of Toronto. “It damaged my love for Bohmian mechanics.”
But Steinberg has found a way to rekindle that love. In a paper published in Science Advances, Steinberg and his colleagues — the team includes Wiseman, in Australia, as well as five other Canadian researchers — describe what happened when they actually performed the ESSW experiment. They found that the photon trajectories aren’t surrealistic after all — or, more precisely, that the paths may seem surrealistic, but only if one fails to take into account the nonlocality inherent in Bohm’s theory.

The experiment that Steinberg and his team conducted was analogous to the standard two-slit experiment. They used photons rather than electrons, and instead of sending those photons through a pair of slits, they passed through a beam splitter, a device that directs a photon along one of two paths, depending on the photon’s polarization. The photons eventually reach a single-photon camera (equivalent to the screen in the traditional experiment) that records their final position. The question “Which of two slits did the particle pass through?” becomes “Which of two paths did the photon take?”
Importantly, the researchers used pairs of entangled photons rather than individual photons. As a result, they could interrogate one photon to gain information about the other. When the first photon passes through the beam splitter, the second photon “knows” which path the first one took. The team could then use information from the second photon to track the first photon’s path. Each indirect measurement yields only an approximate value, but the scientists could average large numbers of measurements to reconstruct the trajectory of the first photon.

The team found that the photon paths do indeed appear to be surreal, just as ESSW predicted: A photon would sometimes strike one side of the screen, even though the polarization of the entangled partner said that the photon took the other route.
But can the information from the second photon be trusted? Crucially, Steinberg and his colleagues found that the answer to the question “Which path did the first photon take?” depends on when it is asked.
At first — in the moments immediately after the first photon passes through the beam splitter — the second photon is very strongly correlated with the first photon’s path. “As one particle goes through the slit, the probe [the second photon] has a perfectly accurate memory of which slit it went through,” Steinberg explained.
But the farther the first photon travels, the less reliable the second photon’s report becomes. The reason is nonlocality. Because the two photons are entangled, the path that the first photon takes will affect the polarization of the second photon. By the time the first photon reaches the screen, the second photon’s polarization is equally likely to be oriented one way as the other — thus giving it “no opinion,” so to speak, as to whether the first photon took the first route or the second (the equivalent of knowing which of the two slits it went through).
The problem isn’t that Bohm trajectories are surreal, said Steinberg. The problem is that the second photon says that Bohm trajectories are surreal — and, thanks to nonlocality, its report is not to be trusted. “There’s no real contradiction in there,” said Steinberg. “You just have to always bear in mind the nonlocality, or you miss something very important.”
Faster Than Light
Some physicists, unperturbed by ESSW, have embraced the Bohmian view all along and aren’t particularly surprised by what Steinberg and his team found. There have been many attacks on the Bohmian view over the years, and “they all fizzled out because they had misunderstood what the Bohm approach was actually claiming,” said Basil Hiley, a physicist at Birkbeck, University of London (formerly Birkbeck College), who collaborated with Bohm on his last book, The Undivided Universe. Owen Maroney, a physicist at the University of Oxford who was a student of Hiley’s, described ESSW as “a terrible argument” that “did not present a novel challenge to de Broglie–Bohm.” Not surprisingly, Maroney is excited by Steinberg’s experimental results, which seem to support the view he’s held all along. “It’s a very interesting experiment,” he said. “It gives a motivation for taking de Broglie–Bohm seriously.”
On the other side of the Bohmian divide, Berthold-Georg Englert, one of the authors of ESSW (along with Marlan Scully, George Süssman and Herbert Walther), still describes their paper as a “fatal blow” to the Bohmian view. According to Englert, now at the National University of Singapore, the Bohm trajectories exist as mathematical objects but “lack physical meaning.”
On a historical note, Einstein lived just long enough to hear about Bohm’s revival of de Broglie’s proposal — and he wasn’t impressed, dismissing it as too simplistic to be correct. In a letter to physicist Max Born, in the spring of 1952, Einstein weighed in on Bohm’s work:
Have you noticed that Bohm believes (as de Broglie did, by the way, 25 years ago) that he is able to interpret the quantum theory in deterministic terms? That way seems too cheap to me. But you, of course, can judge this better than I.
But even for those who embrace the Bohmian view, with its clearly defined particles moving along precise paths, questions remain. Topping the list is an apparent tension with special relativity, which prohibits faster-than-light communication. Of course, as physicists have long noted, nonlocality of the sort associated with quantum entanglement does not allow for faster-than-light signaling (thus incurring no risk of the grandfather paradox or other violations of causality). Even so, many physicists feel that more clarification is needed, especially given the prominent role of nonlocality in the Bohmian view. The apparent dependence of what happens here on what may be happening there cries out for an explanation.
“The universe seems to like talking to itself faster than the speed of light,” said Steinberg. “I could understand a universe where nothing can go faster than light, but a universe where the internal workings operate faster than light, and yet we’re forbidden from ever making use of that at the macroscopic level — it’s very hard to understand.”
by : Dan Falk
http://advances.sciencemag.org/content/2/2/e1501466
https://www.quantamagazine.org/20150910-einstein-insanity/
https://www.quantamagazine.org/20140624-fluid-tests-hint-a…/
https://www.quantamagazine.org/20140624-fluid-tests-hint-a…/
https://books.google.com.ph/books…
http://www.thefunisreal.com/tag/de-broglie-bohm-mechanics/
http://math.mit.edu/~bush/?p=3087

Cecile G. Tamura

First WiFi ever