Search This Blog

Wednesday, December 23, 2015

Tarim mummies

The Tarim mummies are a series of mummies discovered in the Tarim Basin in present-day Xinjiang, China, which date from 1800 BCE to the first centuries BCE. The mummies, particularly the early ones, are frequently associated with the presence of the Indo-European Tocharian languages in the Tarim Basin,although the evidence is not totally conclusive and many centuries separate these mummies from the first attestation of the Tocharian languages in writing. Victor H. Mair's teamconcluded that the mummies are Europoid, likely speakers of Indo-European languages


Han Kangxin, who examined the skulls of 302 mummies, found the closest relatives of the earlier Tarim Basin population in the populations of the Afanasevo culture situated immediately north of the Tarim Basin and the Andronovo culture that spanned Kazakhstan and reached southwards into West Central Asia and the Altai.
It is the Afanasevo culture to which Mallory & Mair (2000:294–296, 314–318) trace the earliest Bronze Age settlers of the Tarim and Turpan basins. The Afanasevo culture (c. 3500–2500 BCE) displays cultural and genetic connections with the Indo-European-associated cultures of the Eurasian Steppe yet predates the specifically Indo-Iranian-associated Andronovo culture (c. 2000–900 BCE) enough to isolate the Tocharian languages from Indo-Iranian linguistic innovations like satemization.
In 2009, the remains of individuals found at a site in Xiaohe were analyzed for Y-DNA and mtDNA markers. They suggest that an admixed population of both west and east origin lived in the Tarim basin since the early Bronze Age. The maternal lineages were predominantly East Eurasian haplogroup C with smaller numbers of H and K, while the paternal lines were all West Eurasian R1a1a. The geographic location of where this admixing took place is unknown, although south Siberia is likely. In 2012 – 11 R1a1a, 1 K*

The Mosque to moaid, Cairo, Egypt.


கண்ணா...

முனிவர்களும் யோகிகளும்
இதயத்தில் உன் நாமத்தை
தியானிக்கின்றனராம்
உன்னை அடைய...

நான் உன்னுள்
உறைந்துபோனதை
சொல்லிவிடாதே
கண்ணா...
Sakthi Giri

சுஜா கவிதை..


எம் மதமும் சம்மதம் என்று நினைக்கும் மனிதாபிமானம்


Tuesday, December 22, 2015

India and Sanskrit: The source of world literature


By Stephen Knapp
Sanskrit, if it is the original language since the creation, is also the source of world literature. Laura Elizabeth Poor observes in her book, Sanskrit and Its Kindred Literature-Studies in Comparative Mythology, “I propose to write about the literature of different nations and different centuries. I wish to show that this literature is not many but one; that the same leading ideas have arisen at epochs apparently separated from each other; that each nation however isolated it may seem, is, in reality, a link in the great chain of development of the human mind; in other words to show the unity and continuity of literature...The histories of Phoenicians, Cartheginians, Romans or Greeks, were so many detached pieces of information...But the moment the mind realizes...that one nation is connected with all others, its history becomes delightful and inspiring...And it is to the Sanskrit language that we owe this entire change...Sanskrit was a spoken language at the of Solomon, 1015 B.C., also of Alexander, 324 B.C.”
In this same line of thought, it has been determined that the Sanskrit Rig-Veda is the oldest piece of literature in the world. Reverend Morris Philip, in his book The Teaching of the Vedas (p.213), concludes, “After the latest researches into the history and chronology of the book of Old Testament, we may safely now call the Rigveda as the oldest book not only of the Indian community, but of the whole world.”
A.A.Macdonell provides a few more details in his book, India's Past, about how various literature in the world are all connected. In fact, he explains that many of the world's fairy tales come from India. “The history of how India's fairy tales and fables migrated from one country to another to nearly all the people of Europe and Asia, and even to African tribes from their original home in India, borders on the marvellous. It is not a case of single stories finding their way by word of mouth...from India to other countries, but of whole Indian books becoming through the medium of translations the common property of the world...many fairy tales current among the various people can be traced to their original home in India.”
When we begin to compare the ancient legends and stories of one country with another, and one time period with another, we can recognize how similar and yet different they are. The conclusion is that they had to have come from one basic source, one people that later became divided and spread out over a wide area. Each part of this society must have brought with them into the new lands their old legends that were once common to all. Many of these stories were later shaped and altered according to the place they lived, and the natural aesthetic and artistic preferences they acquired, while the primary legends have been the most likely to maintain their storyline. Though various mythologies may have similarities, the most common traits can be seen between any of them and the Vedic traditions. These kinds of similarities between these myths and the Vedic legends makes it clear that the Vedic tradition is the original from which all others are derived.
An example of this is the Indian classic Ramayana, from India the Ramayana has travelled to many other countries who now claims their own versions of the epic. Indonesia, Malaysia, Thailand, even Jamaica and Africa have versions of the Ramayana that have slight differences from the Indian Ramayana. Thus we can see how this early Sanskrit literature travelled throughout the world and became local versions of what originated in India. The next section further corroborates this point.

நூறு முறைக்கும் மேல் பார்த்தும் திகட்டவில்லை.


Pomona Ranganatha Swamy


கேப்டன்திரு விஜயகாந்த் அவர்களை பற்றி சில குறிப்புகள்...

🇮🇳 1, இந்தியாவின் சிறந்த குடிமகன்
விருதை பெற்றவர் இவர் தான் !
🇮🇳 2, இதுவரை தமிழ் சினிமா
வரலாற்றில் தமிழ் படங்களில் தவிர
வேறு எந்த மொழி படத்திலும்
நடிக்கவில்லை !
🇮🇳 3, வருடம் வருடம் தனது பிறந்த நாள்
அன்று எம் -ஜி -ஆர் காது கேளாத
பள்ளி க்கு10, லட்சம் நிதி உதவி
செய்து வருபவர் இவர் தான் !
🇮🇳 4, முதல் முதலில் திரைப்பட கல்லூரி
மாணவர்களுக்கு திரையுலகில்
வாய்ப்பு கொடுத்தவர் இவர் தான் !
🇮🇳 5 , இந்தியா வில் எந்த மாநிலத்தில
வது இயற்கை சீற்றம் ஏற்பட்டாலும்
முதலில் 5, லட்சம் நிதி உதவி
செய்யுபவரும் இவர் தான் !
🇮🇳 6, முதல் முதலில் நடிகர் இலவச
மருத்துவமனை வைத்தவரும் இவர்
தான் !
🇮🇳 7, நடிகர் சங்கம் கடனில்
தத்தளித்தபோது இவர்முயற்சியால்
வெளிநாடுகளிலில் கலைநிகழ்ச்சி
நடத்தி கடனைஅடைத்து
நடிகர்சங்கத்தை சிறப்பாக
செயல்படுத்தியவர்.....
🇮🇳 8, ஜெயலலிதாவை எதிர்த்த ஒரே
ஆம்பளயும் இவர்தான் ...
🇮🇳 9, மற்றவர்களை போல் மீடியா முன்
நடிக்காமல் எதார்த்தமாக பேசுவரும்
இவர்தான்.

வைகுண்ட ஏகாதசி வந்த கதை!


ஆலிலை மேல் பள்ளிகொண்ட பெருமாள் தன் நாபிக் கமலத்தில் இருந்து பிரம்மனைப் படைத்தார். அப்போது பிரம்மனுக்கு அகங்காரம் மேலிட்டது. அதே வேளையில் பகவானின் காதுகளில் இருந்து இரண்டு அசுரர்கள் வெளிப்பட்டார்கள். அகம்பாவம் பிடித்த பிரம்மனை அப்போதே கொல்ல முயன்றார் கள். பெருமாள் அவர்களைத் தடுத்து ''பிரம்மனைக் கொல்லாதீர்கள்! உங்களுக்கு வேண்டிய வரத்தை நானே தருகிறேன்'' என்றார்.
கொஞ்சம் இறங்கி வந்தால், அது தெய்வமாகவே இருந்தாலும் அலட்சியப்படுத்துவது என்பது அசுரர் களின் சுபாவம் போலிருக்கிறது. அசுரர்கள் அலட்சிய மாக, ''நீ என்ன எங்களுக்கு வரம் கொடுப்பது? நாங்கள் உனக்கே வரம் தருவோம்'' என்றார்கள்.
ஸ்வாமி சிரித்தார். ''அப்படியா? சரி! இப்படி அகங்காரம் கொண்ட நீங்கள் என்னால் வதம் செய்யப்பட வேண்டும். அதன் பிறகு ராட்சசர்களாகவே பிறக்க வேண்டும்'' என்றார்.
அசுரர்கள் திகைத்தார்கள். ''ஸ்வாமி! தாங்கள் இவ்வாறு எங்களுக்குத் தண்டனை அளிக்கக் கூடாது. தங்களோடு ஒரு மாத காலம் நாங்கள் சண்டையிட வேண்டும். அதன் பிறகு தங்களுடைய அருளினால் நாங்கள் ஸித்தி அடைய வேண்டும்'' என வேண்டினார்கள்.
அவர்கள் வேண்டியபடியே ஒரு மாத காலம் போரிட்டு, பிறகு அவர்களை வதைத்தார் பெருமாள். இறுதியில் மகாவிஷ்ணுவின் குணங்கள் எல்லாவற்றையும் உணர்ந்த அசுரர்கள், ''தெய்வமே! தங்கள் பரமபதத்தில் நாங்கள் நித்திய வாசம் செய்ய வேண்டும்'' என வேண்டிக் கொண்டனர். ஒரு மார்கழி மாதம், வளர்பிறை ஏகாதசியன்று (பரமபதத்தின்) வடக்கு நுழைவாயிலைத் திறந்த பகவான், அதன் வழியாக அசுரர்களை பரமபதத்தில் சேர்த்தார்.
அங்கே ஆதிசேஷன் மேல் இருக்கும் அனந்தனின் திவ்விய மங்கல வடிவம் கண்டு பரம ஆனந்தம் அடைந்தனர் அசுரர்கள்.
''ஸ்வாமி! பிரம்மா முதலான எல்லோருக்கும் பகவானான தங்களை அர்ச்சாவதாரமாக (விக்கிரக வடிவமாக)ப் பிரதிஷ்டை செய்து, மார்கழி மாத வளர்பிறை ஏகாதசி அன்று, தாங்கள் எங்களுக்குச் செய்த அனுக்கிரகத்தை உற்சவமாகக் கடைப்பிடிக்க வேண்டும். அன்று (கோயிலில்) வடக்கு நுழைவாயில் வழியாக வெளியே எழுந்தருளும் தங்களை தரிசிப்பவர்களும், தங்களுடன் வடக்கு நுழைவாயில் வழியே வெளியே வருபவர்களும், அவர்கள் எவ்வளவு பெரும் பாவிகளாக இருந்தாலும், மோட்சம் அடைய வேண்டும். இதுவே எங்கள் பிரார்த்தனை!'' என்று வேண்டினார்கள்.
''அப்படியே ஆகட்டும்!'' என அருள் புரிந்தார் அச்சுதன். 'வைகுண்ட ஏகாதசி அன்று வைகுண்டவாசனை தரிசிப்பவர்கள் அனைவருக்கும் மோட்சம் கிடைக்க வேண்டும்’ என நமக்காக அன்றே அசுரர்கள் வேண்டி இருக்கிறார்கள். ஒப்பில்லாத ஸ்வாமியும் அதற்கு ஒப்புதல் தந்திருக்கிறார்.
எனவே, வைகுண்ட ஏகாதசி தினத்தில் இல்லத்தில் விரதம் இருந்து வழிபடுவதுடன் பெருமாள் கோயில்களில் சொர்க்கவாசல் திறப்பு வைபவத்தில் கலந்துகொள்வதாலும், பெருமாளைத் தரிசித்து வழிபடுவதாலும் இம்மை செழிக்கும்; மறுமை சிறக்கும். சகல செளபாக்கியங்களும் ஸித்திக்கும்.

விடுமுறைக்கு இலங்கை செல்லும் தமிழா?? உமக்கு அவசர வேண்டுகோள்…

பெரும்பாலும் முட்டை போன்ற வடிவமைப்பைக்கொண்ட வீடுகள் அல்லது அடுக்கு மாடிக் கொங்ரீட் பொந்துகளில் தனிமைப்படுத்தப்பட்ட சிறைவாழ்க்கை புலம்பெயர் நாடுகள் வாழும் சாமானியத் தமிழன் நாளாந்த இருப்பு. முப்பது ஆண்டுகளின் பின்னர் கூட சுத்திகரிப்புத் தொழிலாளிகளாகவும், உணவகங்களிலும், பெற்றோல் நிலையங்களிலும் வேலைபார்த்து நாற்பது வயதில் நோய்களைச் சுமந்து முதுமையடைந்து விடும் மனிதர்களால் உருவானதே புலம்பெயர் சமூகம். ஒவ்வொரு மாதம் முடிவதற்கு முன்னரே வாடைகையை அல்லது வீட்டிற்கான வங்கிக்கடனைச் செலுத்துவதற்கு மாரடிக்கும் புலம்பெயர்ந்த தமிழனின் வாழ்வு எந்த மகிழ்ச்சியும் அற்ற திறந்த வெளிச் சிறை.
எப்போதாவது நண்பர்கள் சந்தித்துக்கொள்ளும் போது மூக்கு முட்டக் குடித்துவிட்டு வீடு செல்வதோ, வங்கிகளில் கடன்பெற்று பூப்புனித நீராட்டு விழா, ஐம்பதாவது பிறந்ததினம் ஆலயத்திருவிழாக்கள் போன்றவற்றைக் கொண்டாடுவதோ புலம்பெயர் நாடுகளில் மகிழ்ச்சியாகக் கருதப்படுகிறது. பல வருடங்களாக ஐரோப்பிய அமெரிக்க நாடுகளில் வாழ்பவர்கள் இந்த அவலமான வாழ்க்கைக்குப் பழக்கப்பட்டுவிடுகின்றனர்.
மனிதர்களோடு மனிதர்கள் உறவாடாத சிறை ஒன்றை விலைகொடுத்துத் தாமே வாங்கிக் கொண்டு அதற்கு முடங்கிப் போகின்றனர். எலும்பை உறையவைக்கும் குளிரில் சுமக்கமுடியாத உடையணிந்து சிறையிலிருந்து வெளியேவரும் மனிதன், நாளாந்த வாழ்க்கையை ஓட்டுவதற்காக சில வேளைகளில் பதினைந்து மணி நேரங்கள் வரை வேலை செய்ய வேண்டிய நிலை ஏற்படுகின்றது.சில குடும்பங்களில் கணவன் மனைவி பிள்ளைகள் ஒன்றாக சந்தித்து கொள்வது ஒன்றாக உணவருந்துவது சில நாட்களில் மட்டும் என்ற கசப்பான உண்மையும் உண்டு
இரண்டாயிரம் யூரோ வரை ஊதியம் பெறுகின்ற ஒரு குடும்பத்திற்கு வேலையையும் பணத்தையும் தவிர வேறு எந்த உலக அறிவும் கிடைக்காது. பிட்சா உணவகத்தில் வேலை செய்யும் ஒருவருக்கு கோதுமை மாவை எப்படி எல்லாம் ஊதிப் பெருக்கலாம் என்று தெரிகிற அளவிற்கு தான் வாழும் நாட்டின் வரலாற்றில் சிறு பகுதியாவது தெரிந்திருக்காது. தனது இரண்டாயிரம் ஊதியத்தில் வீட்டு வாடைகைக்காகவோ, வங்கிக் கடனுக்காகவோ 1200 யூரோக்கள் வரை தொலைந்துபோக மிகுதி 800 யூரோவில் ஒருபகுதி மின்சாரக் கட்டணம் தொலைபேசி எனச் செலவழிந்து போக எஞ்சிய பணத்தில் உணவு உடை என்ற எஞ்சிய செலவுகளை முடித்துக்கொள்கிறார்.
இவை அனைத்திலும் சிக்கனமாக வாழ்ந்தால் ஒரு வருடத்தின் முடிவில் இலங்கைக்கோ அல்லது இந்தியாவிற்கோ செல்வதற்கான பயணச் சீட்டிற்குப் பணத்தைச் சேமித்துக்கொள்கிறார்.
இவற்றுள் அனைத்து உண்மைகளும் இலங்கையிலிருப்பவர்களுக்கு மறைக்கப்படுகின்றது. தாம் புலம்பெயர் நாடுகளில் மன்னர்கள் போல வாழ்வதாக பொய்யைக் கட்டவிழ்த்து விடுகின்றனர். இதன்மூலம்தங்களை தாங்களே பெருமைப்படுத்தும் அறிவீனமும் மறைந்த நிற்கின்றது
இலங்கை போன்ற நாடுகளில் ஐரோப்பா என்பது செல்வம் கொழிக்கும் சொர்க்கபுரி என்ற விம்பம் ஏற்படுத்தப்பட்டுள்ளது. அங்கு வாழ்பவர்கள் மன்னர்கள் போல வாழ்க்கை நடத்துகிறார்கள் என்ற தவறான புனைவுகளின் கனவுகளில் மக்கள் வாழ்கிறார்கள். இந்த எதிர்பார்ப்பை புலம்பெயர் நாடுகளிலிருந்து இலங்கைக்கு விடுமுறைக்குச் செல்பவர்கள் திருப்திப்படுத்த வேண்டிய நிலைக்குத் தள்ளப்படுகின்றனர்.
அதற்காக தாம் வாழும் வாழ்கையை மறைத்து ஒரு நாடக வாழ்வியலை தெரிந்தே செயல்ப்படுத்துகின்றனர் விடுமுறைக்குச் செல்லும் ஒருவருக்கும் இலங்கையிலிருக்கும் சாமானிய மனிதனுக்கும் இடையே தவறான புரிதல்களை அடிப்படையாககொண்ட போலியான உறவு ஒன்று ஏற்படுகிறது. தனது வாழ்க்கையை முழுமையாக மறைக்கும் புலம்பெயர் மனிதனின் பொய் இந்த இருவருக்கும் இடையே ஒரு இரும்புத் திரையை ஏற்படுத்துகின்றது.
பயணச்சீட்டிற்கே ஒருவருடம் வருந்தும் ஒருவர் வங்கிக்கடனிலோ, கடன் அட்டையிலோ இலங்கையில் தனது நாடகத்தை நடத்த வேண்டிய நிலைக்குத் தள்ளப்படுகிறார். முதலில் இலங்கை சென்று மற்றவர்களுக்குத் தனது நிலையை மறைப்பதற்காக கடன் அட்டைகளைப் பயன்படுத்தி விலையுயர்ந்த ஆடையணிகளை வாங்கிகொள்கிறார். பரிசுப் பொருட்களை வாங்கிக்கொள்கிறார். இலங்கை சென்றதும் உறவினர்களுக்குப் பண உதவி, கடா வெட்டி விருந்துவைத்தல் ,கோவில் திருவிழாக்களைப் பொறுப்பெடுத்தல் போன்றவற்றைக் கடன் அட்டைகளைப் பயன்படுத்தி மேற்கொள்கிறார்.
துப்பரவுத் தொழிலாளியாக புலம்பெயர் நாடுகளில் வேலைசெய்யும் ஒருவர் இலங்கையில் காட்டும் ‘கலரால்’ பிரமித்துப்போகும் உள்ளூர்வாசிகள் புலம்பெயர் நாடுகள் தொடர்பாகக் கனவுகளில் ஈடுபட ஆரம்பித்துவிடுகின்றனர். மண்ணோடு பற்றற்ற ஐரோப்பியக் கனவுகளில் வாழுகின்ற உதிரிகளின் சமூகம் ஒன்று வட-கிழக்கிலும் உருவாகிவிடுகின்றது.
தாய் நாட்டில் விடுமுறையை முடித்துப் புலம்பெயர் நாடுகளை நோக்கித் திரும்பும் ஐரோப்பியத் தமிழன் தனது கடனட்டைக் கடனைத் திருப்பிச் செலுத்த இன்னும் பல ஆண்டுகள் ஆகிவிடுகின்றது. இதனாலேயே பல குடும்ப உறவுகளே சிதைவடைகின்றது.
தமது வாழ்க்கை தொடர்பான உண்மை நிலையை இலங்கைக்குச் செல்லும் ஒவ்வொரு ஐரோப்பியத் தமிழனும் தமது உறவினர்களுக்குச் சொல்லவேண்டும். அவர்களைக் கனவுலகத்திலிருந்து விடுவித்து சொந்த மண்ணையும் மக்களையும் நேசிக்கும் சமூகமாக உருவாக்க வேண்டும். வாழ்வதற்காக அடிமைகளாகும் கடன் சமூகத்தை நோக்கி தவறான விம்பத்தை அழிக்க வேண்டும். எங்கள் சொந்த மண் எல்லா வளங்களையும் கொண்டது, வானமும் வையகமும் ஒத்துழைக்கும் செல்வம் கொழிக்கும் பிரதேசங்கள் அவை. இவற்றைப் புரிந்துகொண்டால் ஒடுக்குமுறைக்கு எதிராகப் வாழ்ந்து போராடி வெற்றிபெறும் சமூகம் தோன்றும்.சிந்திப்பீர்களா உறவுகளே …..

பெத்தபிள்ளகூட இப்படி உதவுமா ?


ஹிட்லரின் வரலாறு


இரண்டாம் உலகப் போரின் கதாநாயகனும் வில்லனும் ஒருவரே. அவர்தான் ஹிட்லர். முதல் உலகப் போரின்போது ஜெர்மனி படையில் ராணுவ வீரராக இருந்த ஹிட்லர், இரண்டாம் உலகப்போரின் போது ஜெர்மனியின் சர்வாதிகாரியாக விளங்கினார். அவர் பெயரைக் கேட்டாலே உலகம் நடுங்கியது.
இரண்டாம் உலகப்போர் மூள்வதற்கும், அதன் மூலம் 5 கோடி பேருக்கு மேல் சாவதற்கு காரணமாக இருந்த ஹிட்லரின் வாழ்க்கை, பல திருப்பங்களும், திடுக்கிடும் சம்பவங்களும் நிறைந்தது.வட ஆஸ்திரியாவில் உள்ள பிரானவ் என்ற ஊரில் 1889-ம் ஆண்டு ஏப்ரல் 20-ந்தேதி பிறந்தவர் ஹிட்லர். பிறந்தது முதலே ஹிட்லர் நோஞ்சானாக இருந்தார். அடிக்கடி காய்ச்சல் வருமாம். 18 வயதானவுடன் அம்மாவிடம் பணம் வாங்கிக்கொண்டு, ஓவியராக போகிறேன் என்று சொல்லி, ஆஸ்திரியாவின் தலைநகர் வியன்னாவுக்கு ரயிலேறி விட்டார்.

பணம் கரைந்தது, பிழைக்க வழி தேடி ஜெர்மனிக்கு வந்தார். வாழ்வில் எதாவது சாதித்து சிறிய அளவிலாவது ‘ஹீரோ’ ஆகவேண்டும் என்ற எண்ணம் தோன்றியது அப்போதுதான். ஓவியராக முடியவில்லை. ராணுவத்திலாவது சேரலாம் என்றெண்ணி ஜெர்மனிய ராணுவத்தில் சேர்ந்தார். அப்போது அவருக்கு வயது 25. முதல் உலகப்போர் தொடங்கிய சமயம் அது. உலகப்போரின் போது எதிரிகளால் ‘மஸ்டர்ட்’ வாயு வீசப்பட்டதால் ஹிட்லரின் ஒரு கண் தற்காலிகமாக பாதிக்கப்பட்டது. அந்த சமயத்தில் ஜெர்மனி முதலாம் உலகப்போரில் சரண் அடைந்தது. “கம்யூனிஸ்ட்களும் யூதர்களும் தான் ஜெர்மனியின் தோல்விக்கு ரகசியமாக வேலை செய்தார்கள். அவர்களை அழிக்காமல் விடமாட்டேன்!” என்று தனது மனதில் அவர்களின் மேல் உள்ள வெறுப்பை முதன்முறையாக வெளிப்படுத்தி கர்ஜித்தார் ஹிட்லர்.
மருத்தவமனியில் இருந்து வெளிவந்த ஹிட்லர் புதிதாக தொடங்கப்பட்டிருந்த ‘தேசிய சோசியலிஸ்ட் ஜெர்மன் தொழிலாளர் கட்சி’ யில் உறுப்பினராகச் சேர்ந்தார். அப்போது அந்த கட்சியின் உறுப்பினர் பலமே சில நூறு தான். அந்த கட்சியின் ஜெர்மனி மொழியின் சுருக்கமே ‘நாஜி’. மாலை நேரங்களில் யார் வீட்டு மாடியிலாவது கூடி, அரசை திட்டித் தீர்ப்பதுதான் அந்தக் கட்சியின் பொழுதுப்போக்காக இருந்தது.
1920, பிப்ரவரி 29 ம் தேதி, அந்தக்கட்சியின் முதல் பொதுக்கூட்டம் நடந்தது. ஹிட்லர் தனது முதல் உரையை தொடங்கினார்.
அடுத்த ஓரிரு ஆண்டுகளில் ஹிட்லரின் உரையை கேட்பதற்காகவே பல்லாயிரக் கணக்கானவர்கள் திரண்டனர். உலகின் மிகச்சிறந்தவர்கள் ஜெர்மனியர்கள் என்ற பெருமிதத்தை அவர்களிடம் விதைத்தார் ஹிட்லர்.
உலகை வழிநடுத்தும் தகுதி உடையவர்கள் ஜெர்மானியர்கள் மட்டும்தான் என்று முழங்கினார். யூதர்களையும் கம்யூனிஸ்ட்களையும் மிகக் கேவலமாக தனது புத்தகத்தில் சாடினார். யூதர்கள், ரஷ்யர்கள், மனநிலை பாதிக்கப்பட்டவர்கள் இல்லாத ஒரு புது யுகத்தை உருவாக்க வேண்டும் என்ற ஆபத்தான கருத்தை முன்வைத்தார்.
1928-ல் நடந்த தேர்தலில் ஹிட்லரின் கட்சி தோல்வி அடைந்தது. ஆனால் ஹிட்லர் சோர்ந்து போய்விடவில்லை. ஹிட்லரின் பேச்சாற்றலால் கட்சி வியக்கத்தக்க வேகத்தில் வளர்ந்தது. ஹிண்டன்பெர்க் கட்சியினருக்கு ஆட்சியமைக்க நாஜி கட்சியினரின் ஆதரவு தேவைப்பட்டது. எனவே கூட்டணி அரசில், ஹிட்லருக்கு ‘சான்சலர்’ பதவி கிடைத்தது.
அந்த சமயம் பாராளுமன்றக் கட்டிடம் கொளுத்தப்பட்டது. ஜனாதிபதியாக இருந்த ஹிண்டன்பர்க், மக்கள் போராட்டத்திற்கு அடிபணிந்தார். 1933-ஜனவரி 30-ந்தேதி ஹிட்லரை அழைத்துப் பிரதமராக நியமித்தார். கம்யூனிஸ்ட்களே இதற்கு காரணம் என்று முழங்கி, அவர்களை அடக்க அதிகாரங்களை பெற்றுக் கொண்டார்.
அன்று முதல் ஹிட்லருக்கு ஏறுமுகம்தான். பிரதமராக இவர் பதவி ஏற்ற 1 வருடத்தில் ஜனாதிபதி ஹிண்டன்பர்க் மரணம் அடைந்தார். அவ்வளவுதான். ஜனாதிபதி பதவியையும் கைப்பற்றிக் கொண்டு, எதிர்ப்பாளர்களை எல்லாம் ஒழித்துவிட்டு, ஜெர்மனியின் சர்வாதிகாரி ஆனார் ஹிட்லர்.
“இனி ஜெர்மனியில் ஜனநாயகம் என்ற பேச்சுக்கே இடம் இல்லை” என்று அறிவித்தார். யூதர்களை அடியோடு அழிக்கவேண்டும் என்று முடிவு செய்து. தினமும் சராசரியாக 6 ஆயிரம் முதல் 10 ஆயிரம் பேர் விஷப்புகையிட்டுச் சாகடிக்கப்பட்டனர்.
ஹிட்லரால் கொல்லப்பட்ட யூதர்களின் எண்ணிக்கை சுமார் 50 லட்சம். ஜெர்மனியின் தரைப்படை, கப்பல் படை, விமானப் படை மூன்றும் உலகின் சிறந்த படைகளாக உருவெடுத்தன. உலகத்தையே தன் ஆதிக்கத்தின் கீழ் கொண்டுவர நேரம் நெருங்கிவிட்டதாக நினைத்தார் ஹிட்லர்.
ஹிட்லரின் போர் வெறி, அவருடைய நாஜி கட்சிக்குள்ளேயே அவருக்கு எதிர்ப்பை உண்டாக்கியது. அதனால், அவரை கொலை செய்ய அவருடைய தளபதிகளே சதித்திட்டம் தீட்டினார்கள். மயிரிழையில் உயிர் தப்பிய ஹிட்லருக்கு காயங்கள் ஏற்பட்டிருந்தன.
இந்த சதியையொட்டி, 5 ஆயிரம் பேருக்கு மேல் கைது செய்யப்பட்டனர். அவர்கள் தூக்கிலிடப்பட்டனர். இவ்வளவு பேருக்கு தூக்கு மேடை கிடைக்காததால், விளக்குக் கம்பங்களிலும், மரங்களிலும் பலர் தூக்குக் கயிற்றில் தொங்கவிடப்பட்டனர்.
கறிக்கடையில் மாமிசத்தை தொங்கவிடப்படுவதற்காக உள்ள கொக்கிகளில், வயர்களைக் கட்டி, அதில் பலர் தூக்கில் மாட்டப்பட்டனர்.
வெள்ளைத்துணியில் உள்ள கறுப்புக் கரைகளே நம் கண்களை ஈர்க்கும். அதே போன்று, ஹிட்லரின் தவறுகளால், அவரை பற்றிய நினைவுகள் உலக சமுதாயத்தால் ஒதுக்கப்பட்ட போது, அவரின் சாதனைகளும் கூடவே மறக்கப்பட்டுவிட்டன.
சர்வதிகாரிகளின் ஆட்சிக் காலத்தில் ஆபாச அத்துமீறல்கள் அதிகமாகவே இருக்கும். ஆனால் ஹிட்லர் அத்தகைய ஆபாசங்களை ஒருபோதும் அனுமதிக்கவில்லை. ஒரு விபசார விடுதி கூட அவரின் ஆட்சிக்காலத்தில் இல்லை என்பதே மிகப் பெரிய சாதனை அல்லவா..!
“விபச்சாரம் பிளேக் நோய் போன்றது. சிறிதும் தயவு காட்டாமல் அது அழிக்கப்பட வேண்டும். சமுதாயத்தின் அழுகிப் போன பகுதிகளை நாம் சுத்தப்படுத்த வேண்டும். இலக்கியம், சினிமா, கலை, பத்திரிக்கைகள், சுவரொட்டிகள், கடைகளின் ‘ஷோகேஸ்’கள் அதிலும் ஆபாசம் இருக்க, நான் அனுமதிக்க மாட்டேன்!” என்று எச்சரித்தார் ஹிட்லர்.
1035 பக்கங்கள் கொண்ட ‘அடால்ப் ஹிட்லர்’ என்ற புத்தகத்தை எழுதிய பேராசிரியர் ஜான் டோலேன்ட், “ஹிட்லர் ஆட்சிக்கு வந்த நாலாவது ஆண்டில் எதாவது காரணத்தால் இறந்திருந்தால், உலகமே ஹிட்லரை “ஜெர்மனியின் சரித்தரத்தில் தோன்றிய மிகச் சிறந்த மாமனிதன் என்று பாராட்டியிருக்கும்!” என்று கூறுகிறார். அவரின் சாதனைகளில் சிலவற்றை பார்ப்போம்.
ஹிட்லர் பதவியேற்ற 1933ல் ஜெர்மனியில் வேலை இல்லாதவர்களின் எண்ணிக்கை 60 லட்சம். ஆனால் 1936 ல், அதாவது 3 ஆண்டுகளில், ஜெர்மனியில் வேலையில்லாதவர் என்று ஒருவர் கூட இல்லை என்ற நிலை உருவானது. இந்த சாதனைக்கு காரணம், ஹிட்லரால் தேடிக் கண்டுப்பிடிக்கப்பட்ட ஜால்மர் ஷ்ஹாக்ட் என்ற பொருளாதார ஜீனியஸ் ஆவார்.
ஜால்மர் ஷ்ஹாக்ட் ஒன்றும் முன்னணித் தலைவரில்லை. ஆயினும் அவரது திறமையை உணர்ந்திருந்த ஹிட்லர் அவரை பொருளாதார அமைச்சராக நியமித்து இத்தகைய சாதனையை புரிந்தார். திறமைக்கு மரியாதை கொடுத்து பதவியை கொடுப்பவனே சிறந்த தலைவன். நமக்கு எப்போது அத்தகைய தலைவன் கிடைப்பான்?
ஹிட்லரின் ஆட்சியில் வேலைக்கேற்ற ஊதியம், போனஸ், விலைவாசி எல்லாம் கட்சிதமாக நிர்ணயிக்கப்பட்டது. படு வேகமாக கார்கள் போவதற்கு மிக நீண்ட ‘ஹைவேஸ்’ (Auto Bahn) உலகில் முதலில் கட்டப்பட்டது, ஜெர்மனியில் ஹிட்லரின் ஆட்சிக்காலத்தில்தான்.
முதியவர்களுக்கு பென்ஷன் மற்றும் இலவச வைத்தியம், எல்லோருக்கும் ஹெல்த் இன்சூரன்ஸ் திட்டங்கள் எல்லாம் படுவேகமாக நடைமுறைக்கு வந்தன.
“சாமான்யர்களும் காரில் பயணிக்க வேண்டும். அவர்களுடைய பட்ஜெட்டுக்கு ஏற்றவாறு கார்கள் தயாரிக்கப்பட வேண்டும். ஒரு காலன் பெட்ரோலுக்கு அது நாற்பது மைல் போக வேண்டும்” என்று Porsche கார் நிறுவனத்தின் அதிபர் ‘பெர்டினான்ட் பொர்ஷ்’-ஐ கூப்பிட்டு சொன்னார் ஹிட்லர். பின் பகுதியில் இஞ்சின் அமைப்புடன் தயாரிக்கப்பட்ட அந்த மினி கார்களுக்கு ‘வோக்ஸ்வேகன்’ என்று பெயரிடப்பட்டது. பிற்காலத்தில் அந்தக் கார்கள் உலகப் புகழ் பெற்றது.
தொழிற்சாலைகளால் சுற்றுச்சூழல் மாசு அடையக் கூடாது அன்று ஹிட்லர் சட்டம் கொண்டுவர, அதனால் ஜெர்மனியில் ஓடிய நதிகள் அத்தனையும் படு சுத்தமாக இருந்தது.
பல வலி நிவாரணிகளும், போதைப் பொருள் பழக்கத்தில் இருந்து வெளிவர உதவும் மருந்துகளும், ஹிட்லர்-இன் கடும் முயற்சியால் கண்டுப் பிடிக்கப்பட்டன. ஹைபோதேர்மியா என்னும் உடல் வெப்பத்தை குறைத்திடும் ஒரு நோயிற்கு தீர்வைக் கண்டது ஹிட்லர்-இன் ஜெர்மனிய மருத்துவர்கள் தான். இவ்வாறு மருத்துவத்துறையில் வியத்தகு முன்னேற்றம் அடைந்தது ஜெர்மனி.
ஹிட்லர்-இன் காலத்தில் அவரின் பெரும் முயற்சியால் ஜெர்மனி ராணுவத் தொழில்நுட்பத்திலும் விஞ்ஞானத்திலும் மிகப் பெரிய முன்னேற்றம் அடைந்திருந்தது. போரில் ஜெர்மனி தோல்வியடைந்த பின் ஜெர்மனியின் ராணுவத்தொழில்நுட்ப வல்லுனர்களையும், விஞ்ஞானிகளையும், அமெரிக்கர்களும் ரஷ்யர்களும் பங்குப் போட்டு பிரித்துக் கொண்டனர். அவர்களே இப்போதைய ‘நாசா’ வின் இத்தகைய வளர்ச்சிக்கு காரணமாக இருந்தனர் எனக் கூறுவோரும் உளர்.
ஒரு தலைவனின் கடமை நாட்டின் பொருளாதாரத்தை உயர்த்துவதும், வேலையில்லாமையை ஒழிப்பதும், இந்நாட்டை சேர்ந்தவன் நான் என்று பெருமிதமாக கூறிகொள்ளும் நிலைமையை உருவாக்குவதுவுமே ஆகும். ஹிட்லர் தனது ஆட்சிக் காலத்தில் அத்தகைய தலைவனாக திகழ்ந்தார் என்பதில் சந்தேகமே இல்லை.
8.
ஹிட்லர் ஆட்சிப் பொறுப்பை ஏற்றப் போது, ஜெர்மனியின் ராணுவ வீரர்களின் மொத்த எண்ணிக்கை சுமார் ஒரு லட்சம் தான். அப்போது, உருப்படியான, நவீனரகத் துப்பாகிகள் கூட ராணுவத்தில் கிடையாது. ஆனால் ஹிட்லர் ஆட்சியேற்ற நான்கே ஆண்டுகளில் ஐரோப்பாவின் மிகப் பிரம்மண்டாமான ‘ஆர்மி’யாக அது மாறியது. ‘நவீன போர் விமானங்கள், பீரங்கிகள், துப்பாக்கிகள், டாங்கிகள் கொண்ட அசுர சக்தியாக ஜெர்மனியின் ராணுவம் மாறிய வேகம், உலக வரலாற்றிலேயே அதுவரை நிகழ்ந்திடாத பெரிய ஆச்சரியம்’ என்று உலகப் பெரும் ராணுவ ஆராய்ச்சியாளர்கள் இன்னும் வியந்துக் கொண்டிருக்கிறார்கள்.
ஹிட்லரின் மொத்த பன்னிரண்டு கால ஆட்சிக் காலத்தை பார்த்தால் அவரின் தவறுகளே நம் கண் முன்னே விரிந்திருக்கும். ஆனால் அவரின் முதல் ஐந்தாண்டு கால சாதனைகள் மகத்தானவை.
ஒரு புத்திசாலி சாடிஸ்ட் ஆக மாறினால் மிகவும் ஆபத்தான ஒன்றுதான். ஆனால் ஹிட்லர் என்னும் சாதனையாளன் செய்த சாதனை என்ன தெரியுமா. ‘ஜெர்மனி’ என்ற ஓர் நாட்டையே ‘சாடிஸ்ட் நாடு’ ஆக மாற்றினான் என்றால் அது மிகையில்லை.
யூதர்களை அழித்தொழிக்கும் இலாகாவிற்கு தலைவராக பணியாற்றிய ‘ஐக்மன்’ பின்னாளில் கைது செய்யப்பட்டபோது நிருபர்களிடம் கூறியது என்ன தெரியுமா. ‘ஐம்பது லட்சம் யூதர்களை நாங்கள் கொலை செய்தபோது, இனம்புரியாத ஆழ்ந்த திருப்தி ஏற்பட்டது. மரணதண்டனை கொடுத்தாலும் விஷப் பூச்சிகளை ஒலித்துக் கட்டிய திருப்தியோடு செத்துப் போவேன்’ என்றானாம்.
‘யூதர்கள் மனிதர்கள் அல்ல. அழிக்கப் படவேண்டிய விலங்கினங்கள்!’ என்று அதிகாரிகள் மூளைச் சலவை செய்யப்பட்டிருந்தனர். இவ்வாறு பலர் ஹிட்லரை கண்மூடித்தனமாக நம்பினார்கள். ’ஆடு மாடுகளின் தோலைக் கொண்டு பைகள் செய்வதைப் போன்ற ஒரு செயல் தான் இதுவும்’ என எல்லோரும் நம்பினார்கள்.
அப்படி ஓர் சம்பவமும் “இறந்துப் போன உடல்களை அதிகாரிகள் அப்புறப்படுத்தினார்கள். பல உடல்களுக்குக் கீழே 14வயதுப் பெண் கிடந்தாள், உயிரோடு. உடனே அதிகாரிகள் பரபரப்பு அடைந்தனர். ஒருவர் தேனீர் தயாரித்துக் கொண்டு வந்தார். பிறந்த மேனியோடு கிடந்த அந்த பெண்ணை தூக்கிவந்து, போர்வையால் ஆதரவோடு மூடினார் ஒருவர். அந்தப் பெண்ணை தங்கள் குழந்தை போல் பாவித்து சிலர் கண் கலங்கினார்கள். அப்போது அங்கே நுழைந்தார், சிறைச் சாலையின் தலைவர் மஸ்பெல்டு.
விஷயத்தை மற்றவர்கள் விவரிக்க, கைத்துப்பாக்கியை எடுத்து, எல்லோரும் வேண்டாம் வேண்டாம் எனக் கெஞ்சியதை காதில் வாங்காமல், அந்தப் பெண்ணை நெற்றிப் பொட்டில் சுட்டுக் கொன்றார். கொன்றதும் அவர்க் கூறியது என்ன தெரியுமா.
‘இந்தத் தகவல் தெரிந்தால் தலைவரால் நம் அத்தனை பேரின் கதியும் என்னவாகும் என்று தெரியுமா உங்கள் அனைவருக்கும்’ என்றானாம்.
ஆம். இரக்கமும், மனிதமும் துளிர்த்த சில இடங்களிலும், ஹிட்லர் பற்றிய பயம் அதிகமாக இருந்தது, ஹிட்லர் ஏதோ நெருக்கமாக நின்று தங்களை உற்று கவனிப்பது போன்ற அச்சமும் நடுக்கமான நம்பிக்கையும் அனைவரிடமும் பீடித்து இருந்தது.
ஹிட்லரின் கடைசி நிமிடங்கள்:
1945-ம் ஆண்டு ஏப்ரல் 25-ந்தேதி பெர்லின் நகரை ரஷியப் படைகள் சூழ்ந்து கொண்டு விட்டன. எதிரிகளிடம் சிக்குவதற்குள் தற்கொலை செய்து கொள்வதே மேல் என்ற முடிவுக்கு வந்தார். தன் முடிவைக் காதலி ஈவாபிரவுனிடம் தெரிவித்தார். “வாழ்விலும் உங்களுடன் இருந்தேன். சாவிலும் உங்களுடன்தான் இருப்பேன். உங்களுடன் நானும் தற்கொலை செய்து கொள்வேன்” என்றாள். ஏப்ரல் 28-ந்தேதி ஹிட்லர் ஈவாபிரவுன் திருமணம் நடந்தது. மறு நாள் காலை 11 மணிக்கு, தன் உயிலை எழுதும்படி மனைவி ஈவாவிடம் கூறினார்.
ஹிட்லர். ஈவா எழுதிய உயில் வருமாறு: “
வாழ்விலும், தாழ்விலும் என்னோடு இருந்து என் இன்பதுன்பங்களில் எல்லாம் பங்கு கொண்ட ஈவா என் வாழ்வின் கடைசிக் கட்டத்திலாவது மணந்து கொண்டு கவுரவிக்கவேண்டுமென்று முடிவு செய்தேன். அதன்படி மணந்து கொண்டேன். நாங்கள் இறந்த பிறகு, எந்த ஜெர்மன் நாட்டு மண்ணுக்காகக் கடந்த 12 ஆண்டு காலமாகப் பாடுபட்டு வந்தேனோ, அந்த ஜெர்மன் மண்ணிலேயே என்னையும், ஈவாவையும் உடனே எரித்துவிடவேண்டும். இதுவே என் கடைசி ஆசை. என் சொத்துக்கள் எல்லாம் எனக்குப்பிறகு என் கட்சிக்கு சேரவேண்டும். கட்சி அழிந்து விட்டால் நாட்டுக்குச் சேர வேண்டும்.”
பின்னர், நாட்டுத் தலைவர் என்ற முறையில் மக்களுக்கு இறுதிச் சாசனம் ஒன்றை எழுதினார். அந்தச் சாசனம் வருமாறு: “முதல் உலகப்போரில் ஒரு சாதாரணப்போர் வீரனாக கலந்து கொண்டவன் நான். ஜெர்மனி மண்ணின் மீதும், மக்கள் மீதும் நான் கொண்ட பற்றும், பாசமும்தான் என்னை வழிநடத்தின. கடந்த 30 ஆண்டுகளாக என்சக்தி முழுவதையும் என் தாய் நாட்டின் மேன்மைக்காகச் செலவிட்டிருக்கிறேன். இந்தப் போருக்கு நானே மூலகாரணம் என்று யாரும் நினைக்கவேண்டாம். ஏனென்றால் போர் வெறி கூடாது. ஆயுதக் குறைப்புச் செய்ய வேண்டும் என்று நானே வலியுறுத்தி இருக்கிறேன்.
முதல் உலகப்போருக்குப் பிறகு இப்படி இரண்டாவது உலகப்போர் மூளும் என்று நான் சற்றும் நினைக்கவில்லை. எப்படியோ போர் மூண்டுவிட்டது. இந்தப் போரினால் நம் நாடு சந்தித்த பயங்கர விளைவுகள், நாசமாக்கப்பட்ட பிரமாண்டமான மாளிகைகள், தரைமட்ட மாக்கப்பட்ட கலையம்சம்மிக்க நினைவுச் சின்னங்கள் யாவும் நம் மீது உலக நாடுகள் நடத்திய கோரத் தாக்குதலை நம்முடைய பிற்கால சந்ததியினருக்கு உணர்த்திக்கொண்டு இருக்கும். இந்தப்போருக்குக் காரணமானவர்களைப் பார்க்கும் போதெல்லாம் ஒவ்வொரு ஜெர்மன் இளைஞனுக்கும் உணர்ச்சியும், எழுச்சியும் ஏற்படும்”. இவ்வாறு இறுதிச் சாசனம் எழுதிக் கையெழுத்திட்டார் ஹிட்லர்.
காதலியுடன் ஹிட்லர் தற்கொலை:-
ஒரு சோபாவில், உட்கார்ந்த நிலையில் ஹிட்லரின் உயிரற்ற உடல். அவர் காலடியில் ஒரு துப்பாக்கி கிடந்தது. ஹிட்லரின் வலது கரம் ஒரு புகைப்படத்தை மார்போடு அணைத்தபடி இருந்தது. அந்தப்படம், ஹிட்லரின் தாயாரின் புகைப்படம். தாயின் மீது ஹிட்லர் கொண்டிருந்த பாசத்தை எண்ணி அவர் நண்பர்கள் கண்ணீர் சிந்தினர். மனைவி ஈவா. உடல் நீலம் பாய்ந்திருந்தது. எனவே அவள் சயனைடு விஷம் சாப்பிட்டிருக்க வேண்டும் என்பது புலனாகியது. அவர் தற்கொலை செய்து கொண்டதும், பிணம் எரிக்கப்பட்டதும் பிறகுதான் தெரிந்தது. எனினும் ஹிட்லர் சாகவில்லை, தலைமறைவாக இருக்கிறார் என்று நீண்ட காலம் நம்பியவர்கள் ஏராளம்!

Kantian idea of constructing concepts.







It stands as fundamental and key one for his conception (understanding) of mathematics. Although Kant's constructing is present, as we explained above, at the level of definitions and axioms, but only in mathematical activity constructing finds its essential meaning. In this case mathematics is conceived by Kant as a complex two-level (two-component) way of cognition. It begins with the creation by using definitions “pure sensible concept”.
Their specificity is that they are formed by “arbitrary synthesis”, i.e., contain some mathematical [mental/mind] action. Further, when we constructing concepts we implement descent to the level of (quasi)sensuality (imagination) and relating of the concept to universally valid contemplation — scheme. Here, as if upon the reverse reading (from left to right) of the Hume’s principle, happens the decoding (or construction) of the concept, i.e., the transition to a deep information level: from rational (declarative) level of the concept on contemplative (procedural pragmatic) level of schemes. This can be represented as an expansion of the original abstract concept to lower-level objects that are in some [space-time] environment and with which (therefore) we can perform certain mathematical operations. Actually exactly here the creative mathematical activity of the corresponding type is performed: geometric constructions, algebraic calculations or logical-mathematical proofs, each of which, in turn, represents a certain set of permissible in this environment local action – operations (like drawing the line, division of numbers, etc.). We can say that in this “descent” through sensory intuition the egress beyond the original concepts and the [synthetic] increment of knowledge occurs, as any [dynamic] action (as opposed to static concepts) is a synthesis of at least two views42. The result of this synthesis by reverse return (rise) on the cerebral (conceptual) level is fixed as a formal result of the construction, calculation or the proved theorem.
Schematically, mathematical acts can be represented as follows:
(Understanding) formalized approach
Concept A -------------------> Concept B
^
|
| "Constructing a
concept to descent" |
|
V "Return rise backwards"
(Imagination) |
Scheme A --------------------> Intuition B
mathematical act
Here, following by I. Lakatos (Lakatos, 1976), we should distinguish the actual mathematical activity as a certain sequence of mathematical actions in contemplative environments (space and time) in the lower part of the scheme and its logical design, which can be represented in the upper block of the scheme as a formal-logical transition (“conclusion”) from the concept (formula) A to the concept (formula) B. And the first can not be completely reduced to the second, as the task of the formal proof is not in the modeling of real mathematical activity (for example, as a process of mathematical constructions in the proof of the theorem on the sum of the angles of triangle), but in ensuring the logical rightness (correctness) of its implementation. Therefore, the structure of the real mathematical process differs from its logical design in some formal meta-language.
It is also clear that the situation in modern mathematics is much more difficult, since the above principle of abstraction can be applied iteratively, generating abstractions of increasingly higher levels. Accordingly, the specifying these abstractions “descents” will also be multi-level ones, and intermediate “descents” will likely be not “descents” to the level of sensuality (imagination), but on a preceding more specific rational level. However, the Kantian thesis about the need to “to make an abstract concept sensible” should be the principal one here, it suggests a final “descent” to the level of sensible intuition, for example, geometric drawing.
In his analysis of mathematical activity, Kant distinguishes two types of constructing: geometric and algebraic. Along with the ostensive (from Lat. Ostentus — showing) constructing, based on the spatial intuition, or the intuition in space, Kant also distinguishes founded by time intuition — symbolic construction, underlying the algebraic operations.
But mathematics does not merely construct magnitudes (quanta), as in geometry, but also mere magnitude (quantitatem), as in algebra, where it entirely abstracts from the constitution of the object that is to be thought in accordance with such a concept of magnitude. In this case it chooses a certain notation for all construction of magnitudes in general (numbers), as well as addition, subtraction, extraction of roots, etc. and, after it has also designated the general concept of quantities in accordance with their different relations, it then exhibits all the procedures through which magnitude is generated and altered in accordance with certain rules in intuition; where one magnitude is to be divided by another, it places their symbols together in accordance with the form of notation for division, and thereby achieves by a symbolic construction equally well what geometry does by an ostensive or geometrical construction (of the objects themselves), which discursive cognition could never achieve by means of mere concepts.
Turning to the analysis of more abstract algebra as a kind of mathematical activity we would like to draw attention to two things. Firstly, the use of “language of X-s and Y-s” or transition compared to the arithmetic meta-language of variables, which allows us to “work” not only with certain values as in arithmetic (e.g., distinguish even and odd numbers), but also with abstract values whose validity is spontaneous, i.e. with variables, is one of the major constituents of algebra. Secondly, the language of algebra allows expressing not only abstract symbols, but also [arithmetic] operations (“actions”), which can be done with these symbols, is no less important factor, although it almost falls out of the scope of the analysis.
Thus the algebraic language is, unlike declarative language that is used, for example, in metaphysics (“philosophy vs. mathematics”), a specific procedural language in which the possible ways to work with mathematical objects is fixed, i.e. how we need to make certain mathematical operations. Moreover, if earlier such procedural language was the prerogative of algebra only, now it applies to all branches of the modern, which has become super-abstract, mathematics: no logical-mathematical language without special characters for expressing operations on mathematical objects is possible. It is important to note that the symbolic constructing is much more transparent than ostensive, since in the latter actions are is not expressly “affect” but only “shown” (Wittgenstein) through their real implementation in geometric constructions, although they may be explicated by describing the methods of constructing, in meta-languages. Such codification of possible mathematical actions makes mathematics more rigorous, although it restricts its heuristic potential, as it becomes impossible to introduce new mathematical structures.
However, the symbolic constructing, as indicated by its title, is an abstract one in another respect too. In essence, by mathematical symbols of [algebraic] operations the latter are only coded, i.e. presented in abbreviated [symbolic] form, what suggests their real existence already beyond formulaic expressions. So, formulaic (symbolic) record of multiplying of two numbers “a × b” supposes the real action of multiplying of a and b, for example, by multiplying in column, which serves a la geometric construction.
http://s3.amazonaws.com/…/39314927/katr_philmath2015_30-06-…

Monday, December 21, 2015

PERSPECTIVE FROM A PHOTON



Every model and, even, every theory before and after of general relativity theory considers space and time or spacetime an existing concept/s, physically or mathematically, for all observers. UNST or Nature Mechanics is considering a phys-math Nature individuality. Moreover, not for all observers spacetime is an existing concept. In fact spacetime is connected with locality and, recently, a new experiment "almost" demonstrates non locality of our Universe's Nature across the Bell's theorem free of loopholes proving, empirically, quantum entanglement free of any "spookiness". So far spacetime is a very efficient "construct" to calculate, as a very good approximation, especially for cosmological scales, but it is not the Nature of our Universe at all. Maybe it is a bit shocking for the most of physicist community, but even Einstein realized about it. According to his own words:
"It is neither the point in space, nor the instant in time, at which something happens that has physical reality, but only the event itself".
Ahead, the metaphysician Immanuel Kant said that neither space nor time can be empirically perceived—they are elements of a systematic framework that humans use to structure all experiences. Kant referred to "space" in his Critique of Pure Reason as being a subjective "pure a priori form of intuition", hence it is an unavoidable contribution of our human faculties.
However for a photon, according to the general relativity theory, spacetime is not exist at all. It just an emission and absorption pair that a photon "feels". The photon is not traveling across spacetime from its perspective. It just our perception from our inertial system that photons moves at the speed of light "c". Celeritas is just an illusion. An "relativistic illusion". Also spacetime is another "general relativity illusion".
In spite of the paper linked at the end of this post is claiming new constraints on quantum gravity from X-Rays & Gamma Rays observations, it is not possible to interpret that constraints from the point of view of quantum foaminess of the spacetime. The simple reason is that photons don't suffer any perturbation from the quantum fluctuations of the space time because they are not traveling across it. They are "out" of spacetime. This is harder conjecture than the Wheeler's conjecture (see a bit later in this post).
Spacetime & quantum gravity
Even at the minute scales of distance and duration examined with increasingly discriminating instruments, spacetime still appears to be smooth and structureless. However, a variety of models of quantum gravity posit that spacetime is, on Planck scales, subject to quantum fluctuations. As such, the effect of quantum gravity on light propagation (if detected) can possibly reveal a cou- pling to vacuum states postulated by Inflation and String Theories. In particular, models (e.g., Ng 2003) consistent with the “Holographic Principle” (’tHooft 1993; Susskind 1995; Aharony et al. 2000) predict that space-time foam may be detectable via intensity-degraded or blurred im- ages of distant objects. While these models are not a di- rect test of the Holographic Principle itself, the success or failure of such models may provide important clues to connect black hole physics with quantum gravity and information theory (Hawking 1975).
The fundamental idea is that, if probed at a small enough scale, spacetime will appear complicated – some- thing akin in complexity to a turbulent froth that Wheeler (1963) has dubbed “quantum foam,” also known as “spacetime foam.” In models of quantum gravity, the foaminess of spacetime is a consequence of the Energy Uncertainty Principle connecting the Planck mass and Planck time. Thus, the detection of spacetime foam is important for constraining models of quantum gravity. If a foamy structure is found, it would require that space- time itself has a probabilistic, rather than deterministic nature. As a result, the phases of photons emitted by a distant source would acquire a random component which increases with distance. Furthermore, the recent discov- ery of polarization in the cosmic microwave background by BICEP2 (Ade et al. 2014), if confirmed, also provides evidence for imprints of quantum gravitational effects from the inflationary era appearing on the microwave background. Although these effects originate from an epoch vastly different than the present time, they may be associated with a theoretically expected chaotic (e.g., foamy) inflation of space-time (for a recent review, see Linde 2014 and references therein). Therefore, searching for evidence of quantum foam in the present era, which is actually slowly inflating because of dark energy, may also be helpful in providing observational support for theories of quantum gravity’s role in inflation.
A number of prior studies have explored the possible image degradation of distant astronomical objects due to the effects of spacetime foam (Lieu & Hillman 2003; Ng et al. 2003; Ragazzoni et al. 2003; Christiansen et al. 2006; Christiansen et al. 2011; and Perlman et al. 2011). In particular, most of these focus on possible image blur- ring of distant astronomical objects. We demonstrate that this previous approach was incomplete, and take a different approach, examining the possibility that space- time foam might actually prevent the appearance of im- ages altogether at sufficiently short wavelengths. We con- centrate particularly on observations with the Chandra X-ray Observatory in the keV range (a possibility we con- sidered unfeasible in Christiansen et al. 2011 and Perl- man et al. 2011, but now reconsider), the Fermi Obser- vatory in the GeV range, and ground-based Cherenkov telescopes in the TeV range. Short-wavelength observations are particularly useful in constraining quantum gravity models.
The most prominent models discussed in the literature of the ArXiv link at the end of this post are based in a free parameter "α" to be fixed by observation in the basic phase fluctuation model:
1. The random walk model (Amelino-Camelia 1999; Diosi & Lukacs 1989). In this model, the effects grow like a random walk, corresponding to α = 1/2.
2. The holographic model (Karolyhazy 1966; Ng & van Dam 1994, 1995), so-called because it is con- sistent (Ng 2003) with the holographic principle (‘tHooft 1993; Susskind 1995). (We explain the meaning of “consistent” below.) In this model, the information content in any three-dimensional re- gion of space can be encoded on a two-dimensional surface surrounding the region of interest, like a hologram. (This is the restricted form of the holo- graphic principle that we are referring to.) The holographic model corresponds to a value of α = 2/3 (Christiansen et al. 2011).
3. The original Wheeler conjecture, which in this con- text means that the distance fluctuations are anti- correlated with successive fluctuations (Misner et al. 1973), in which case there are no cumulative ef- fects, so that the distance fluctuation remains sim- ply the Planck length. This corresponds to α = 1 and spacetime foam is virtually undetectable by astronomical means.
While all three of the above models are tested by the techniques discussed in the ArXiv link below and their researches devote most of our attention in this paper to the holographic model (# 2 above) because it is most directly connected to theories of quantum gravity via the holographic principle, I will require your attention to the Wheeler conjecture (# 3 above) because it is most directly connected to theories as UNST (Universal Nature States Theory) or Nature Mechanics. Please read again the first paragraphs of this post to grasps their extreme deepness.
Many researchers believe that physics will not be complete until it can explain not just the behaviour of space and time, but where these entities come from.
"Imagine waking up one day and realizing that you actually live inside a computer game,” says Mark Van Raamsdonk, describing what sounds like a pitch for a science-fiction film. But for Van Raamsdonk, a physicist at the University of British Columbia in Vancouver, Canada, this scenario is a way to think about reality. If it is true, he says, “everything around us — the whole three-dimensional physical world — is an illusion born from information encoded elsewhere, on a two-dimensional chip”. That would make our Universe, with its three spatial dimensions, a kind of hologram, projected from a substrate that exists only in lower dimensions.
This 'holographic principle' is strange even by the usual standards of theoretical physics. But Van Raamsdonk is one of a small band of researchers who think that the usual ideas are not yet strange enough. If nothing else, they say, neither of the two great pillars of modern physics — general relativity, which describes gravity as a curvature of space and time, and quantum mechanics, which governs the atomic realm — gives any account for the existence of space and time. Neither does string theory, which describes elementary threads of energy.
Van Raamsdonk and his colleagues are convinced that physics will not be complete until it can explain how space and time emerge from something more fundamental — a project that will require concepts at least as audacious as holography. They argue that such a radical reconceptualization of reality is the only way to explain what happens when the infinitely dense 'singularity' at the core of a black hole distorts the fabric of space-time beyond all recognition, or how researchers can unify atomic-level quantum theory and planet-level general relativity — a project that has resisted theorists' efforts for generations.
“All our experiences tell us we shouldn't have two dramatically different conceptions of reality — there must be one huge overarching theory,” says Abhay Ashtekar, a physicist at Pennsylvania State University in University Park.
Finding that one huge theory is a daunting challenge. Here, Nature explores some promising lines of attack — as well as some of the emerging ideas about how to test these concepts (see 'The fabric of reality').
NIK SPENCER/NATURE; Panel 4 adapted from Budd, T. & Loll, R. Phys. Rev. D 88, 024015 (2013)
Gravity as thermodynamics
One of the most obvious questions to ask is whether this endeavour is a fool's errand. Where is the evidence that there actually is anything more fundamental than space and time?
A provocative hint comes from a series of startling discoveries made in the early 1970s, when it became clear that quantum mechanics and gravity were intimately intertwined with thermodynamics, the science of heat.
In 1974, most famously, Stephen Hawking of the University of Cambridge, UK, showed that quantum effects in the space around a black hole will cause it to spew out radiation as if it was hot. Other physicists quickly determined that this phenomenon was quite general. Even in completely empty space, they found, an astronaut undergoing acceleration would perceive that he or she was surrounded by a heat bath. The effect would be too small to be perceptible for any acceleration achievable by rockets, but it seemed to be fundamental. If quantum theory and general relativity are correct — and both have been abundantly corroborated by experiment — then the existence of Hawking radiation seemed inescapable.
A second key discovery was closely related. In standard thermodynamics, an object can radiate heat only by decreasing its entropy, a measure of the number of quantum states inside it. And so it is with black holes: even before Hawking's 1974 paper, Jacob Bekenstein, now at the Hebrew University of Jerusalem, had shown that black holes possess entropy. But there was a difference. In most objects, the entropy is proportional to the number of atoms the object contains, and thus to its volume. But a black hole's entropy turned out to be proportional to the surface area of its event horizon — the boundary out of which not even light can escape. It was as if that surface somehow encoded information about what was inside, just as a two-dimensional hologram encodes a three-dimensional image.
In 1995, Ted Jacobson, a physicist at the University of Maryland in College Park, combined these two findings, and postulated that every point in space lies on a tiny 'black-hole horizon' that also obeys the entropy–area relationship. From that, he found, the mathematics yielded Einstein's equations of general relativity — but using only thermodynamic concepts, not the idea of bending space-time.
“This seemed to say something deep about the origins of gravity,” says Jacobson. In particular, the laws of thermodynamics are statistical in nature — a macroscopic average over the motions of myriad atoms and molecules — so his result suggested that gravity is also statistical, a macroscopic approximation to the unseen constituents of space and time.
In 2010, this idea was taken a step further by Erik Verlinde, a string theorist at the University of Amsterdam, who showed that the statistical thermodynamics of the space-time constituents — whatever they turned out to be — could automatically generate Newton's law of gravitational attraction.
And in separate work, Thanu Padmanabhan, a cosmologist at the Inter-University Centre for Astronomy and Astrophysics in Pune, India, showed that Einstein's equations can be rewritten in a form that makes them identical to the laws of thermodynamics — as can many alternative theories of gravity. Padmanabhan is currently extending the thermodynamic approach in an effort to explain the origin and magnitude of dark energy: a mysterious cosmic force that is accelerating the Universe's expansion.
Testing such ideas empirically will be extremely difficult. In the same way that water looks perfectly smooth and fluid until it is observed on the scale of its molecules — a fraction of a nanometre — estimates suggest that space-time will look continuous all the way down to the Planck scale: roughly 10−35metres, or some 20 orders of magnitude smaller than a proton.
But it may not be impossible. One often-mentioned way to test whether space-time is made of discrete constituents is to look for delays as high-energy photons travel to Earth from distant cosmic events such as supernovae and γ-ray bursts. In effect, the shortest-wavelength photons would sense the discreteness as a subtle bumpiness in the road they had to travel, which would slow them down ever so slightly. Giovanni Amelino-Camelia, a quantum-gravity researcher at the University of Rome, and his colleagues have found hints of just such delays in the photons from a γ-ray burst recorded in April. The results are not definitive, says Amelino-Camelia, but the group plans to expand its search to look at the travel times of high-energy neutrinos produced by cosmic events. He says that if theories cannot be tested, “then to me, they are not science. They are just religious beliefs, and they hold no interest for me.”
Other physicists are looking at laboratory tests. In 2012, for example, researchers from the University of Vienna and Imperial College London proposed a tabletop experiment in which a microscopic mirror would be moved around with lasers. They argued that Planck-scale granularities in space-time would produce detectable changes in the light reflected from the mirror (see Naturehttp://doi.org/njf; 2012).
Loop quantum gravity
Even if it is correct, the thermodynamic approach says nothing about what the fundamental constituents of space and time might be. If space-time is a fabric, so to speak, then what are its threads?
One possible answer is quite literal. The theory of loop quantum gravity, which has been under development since the mid-1980s by Ashtekar and others, describes the fabric of space-time as an evolving spider's web of strands that carry information about the quantized areas and volumes of the regions they pass through. The individual strands of the web must eventually join their ends to form loops — hence the theory's name — but have nothing to do with the much better-known strings of string theory. The latter move around in space-time, whereas strands actually are space-time: the information they carry defines the shape of the space-time fabric in their vicinity.
Because the loops are quantum objects, however, they also define a minimum unit of area in much the same way that ordinary quantum mechanics defines a minimum ground-state energy for an electron in a hydrogen atom. This quantum of area is a patch roughly one Planck scale on a side. Try to insert an extra strand that carries less area, and it will simply disconnect from the rest of the web. It will not be able to link to anything else, and will effectively drop out of space-time.
One welcome consequence of a minimum area is that loop quantum gravity cannot squeeze an infinite amount of curvature onto an infinitesimal point. This means that it cannot produce the kind of singularities that cause Einstein's equations of general relativity to break down at the instant of the Big Bang and at the centres of black holes.
In 2006, Ashtekar and his colleagues reported a series of simulations that took advantage of that fact, using the loop quantum gravity version of Einstein's equations to run the clock backwards and visualize what happened before the Big Bang. The reversed cosmos contracted towards the Big Bang, as expected. But as it approached the fundamental size limit dictated by loop quantum gravity, a repulsive force kicked in and kept the singularity open, turning it into a tunnel to a cosmos that preceded our own.
This year, physicists Rodolfo Gambini at the Uruguayan University of the Republic in Montevideo and Jorge Pullin at Louisiana State University in Baton Rouge reported a similar simulation for a black hole. They found that an observer travelling deep into the heart of a black hole would encounter not a singularity, but a thin space-time tunnel leading to another part of space. “Getting rid of the singularity problem is a significant achievement,” says Ashtekar, who is working with other researchers to identify signatures that would have been left by a bounce, rather than a bang, on the cosmic microwave background — the radiation left over from the Universe's massive expansion in its infant moments.
Loop quantum gravity is not a complete unified theory, because it does not include any other forces. Furthermore, physicists have yet to show how ordinary space-time would emerge from such a web of information. But Daniele Oriti, a physicist at the Max Planck Institute for Gravitational Physics in Golm, Germany, is hoping to find inspiration in the work of condensed-matter physicists, who have produced exotic phases of matter that undergo transitions described by quantum field theory. Oriti and his colleagues are searching for formulae to describe how the Universe might similarly change phase, transitioning from a set of discrete loops to a smooth and continuous space-time. “It is early days and our job is hard because we are fishes swimming in the fluid at the same time as trying to understand it,” says Oriti.
Causal sets
Such frustrations have led some investigators to pursue a minimalist programme known as causal set theory. Pioneered by Rafael Sorkin, a physicist at the Perimeter Institute in Waterloo, Canada, the theory postulates that the building blocks of space-time are simple mathematical points that are connected by links, with each link pointing from past to future. Such a link is a bare-bones representation of causality, meaning that an earlier point can affect a later one, but not vice versa. The resulting network is like a growing tree that gradually builds up into space-time. “You can think of space emerging from points in a similar way to temperature emerging from atoms,” says Sorkin. “It doesn't make sense to ask, 'What's the temperature of a single atom?' You need a collection for the concept to have meaning.”
In the late 1980s, Sorkin used this framework to estimate the number of points that the observable Universe should contain, and reasoned that they should give rise to a small intrinsic energy that causes the Universe to accelerate its expansion. A few years later, the discovery of dark energy confirmed his guess. “People often think that quantum gravity cannot make testable predictions, but here's a case where it did,” says Joe Henson, a quantum-gravity researcher at Imperial College London. “If the value of dark energy had been larger, or zero, causal set theory would have been ruled out.”
Causal dynamical triangulations
That hardly constituted proof, however, and causal set theory has offered few other predictions that could be tested. Some physicists have found it much more fruitful to use computer simulations. The idea, which dates back to the early 1990s, is to approximate the unknown fundamental constituents with tiny chunks of ordinary space-time caught up in a roiling sea of quantum fluctuations, and to follow how these chunks spontaneously glue themselves together into larger structures.
The earliest efforts were disappointing, says Renate Loll, a physicist now at Radboud University in Nijmegen, the Netherlands. The space-time building blocks were simple hyper-pyramids — four-dimensional counterparts to three-dimensional tetrahedrons — and the simulation's gluing rules allowed them to combine freely. The result was a series of bizarre 'universes' that had far too many dimensions (or too few), and that folded back on themselves or broke into pieces. “It was a free-for-all that gave back nothing that resembles what we see around us,” says Loll.
But, like Sorkin, Loll and her colleagues found that adding causality changed everything. After all, says Loll, the dimension of time is not quite like the three dimensions of space. “We cannot travel back and forth in time,” she says. So the team changed its simulations to ensure that effects could not come before their cause — and found that the space-time chunks started consistently assembling themselves into smooth four-dimensional universes with properties similar to our own.
Intriguingly, the simulations also hint that soon after the Big Bang, the Universe went through an infant phase with only two dimensions — one of space and one of time. This prediction has also been made independently by others attempting to derive equations of quantum gravity, and even some who suggest that the appearance of dark energy is a sign that our Universe is now growing a fourth spatial dimension. Others have shown that a two-dimensional phase in the early Universe would create patterns similar to those already seen in the cosmic microwave background.
Holography
Meanwhile, Van Raamsdonk has proposed a very different idea about the emergence of space-time, based on the holographic principle. Inspired by the hologram-like way that black holes store all their entropy at the surface, this principle was first given an explicit mathematical form by Juan Maldacena, a string theorist at the Institute of Advanced Study in Princeton, New Jersey, who published his influential model of a holographic universe in 1998. In that model, the three-dimensional interior of the universe contains strings and black holes governed only by gravity, whereas its two-dimensional boundary contains elementary particles and fields that obey ordinary quantum laws without gravity.
Hypothetical residents of the three-dimensional space would never see this boundary, because it would be infinitely far away. But that does not affect the mathematics: anything happening in the three-dimensional universe can be described equally well by equations in the two-dimensional boundary, and vice versa.
In 2010, Van Raamsdonk studied what that means when quantum particles on the boundary are 'entangled' — meaning that measurements made on one inevitably affect the other. He discovered that if every particle entanglement between two separate regions of the boundary is steadily reduced to zero, so that the quantum links between the two disappear, the three-dimensional space responds by gradually dividing itself like a splitting cell, until the last, thin connection between the two halves snaps. Repeating that process will subdivide the three-dimensional space again and again, while the two-dimensional boundary stays connected. So, in effect, Van Raamsdonk concluded, the three-dimensional universe is being held together by quantum entanglement on the boundary — which means that in some sense, quantum entanglement and space-time are the same thing.
Or, as Maldacena puts it: “This suggests that quantum is the most fundamental, and space-time emerges from it.”
A new study combining data from NASA's Chandra X-ray Observatory and Fermi Gamma-ray Telescope, and the Very Energetic Radiation Imaging Telescope Array (VERITAS) in Arizona is helping scientists set limits on the quantum nature of space-time on extremely tiny scales. Credit: NASA/CXC/FIT/E.Perlman et al, Illustration: NASA/CXC/M.Weiss
A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum nature, or "foaminess," of spacetime at extremely tiny scales.
This study combines data from NASA's Chandra X-ray Observatory and Fermi Gamma-ray Space Telescope along with ground-based gamma-ray observations from the Very Energetic Radiation Imaging Telescope Array (VERITAS).
At the smallest scales of distance and duration that we can measure, spacetime—that is, the three dimensions of space plus time—appears to be smooth and structureless. However, certain aspects of quantum mechanics, the highly successful theory scientists have developed to explain the physics of atoms and subatomic particles, predict that spacetime would not be smooth. Rather, it would have a foamy, jittery nature and would consist of many small, ever-changing, regions for which space and time are no longer definite, but fluctuate.
"One way to think of spacetime foam is if you are flying over the ocean in the airplane, it looks completely smooth. However, if you get low enough you see the waves, and closer still, foam, with tiny bubbles that are constantly fluctuating" said lead author Eric Perlman of the Florida Institute of Technology in Melbourne. "Even stranger, the bubbles are so tiny that even on atomic scales we're trying to observe them from a very high-flying airplane."
The predicted scale of spacetime foam is about ten times a billionth of the diameter of a hydrogen atom's nucleus, so it cannot be detected directly. However, If spacetime does have a foamy structure there are limitations on the accuracy with which distances can be measured because the size of the many quantum bubbles through which light travels will fluctuate. Depending on what model of spacetime is used, these distance uncertainties should accumulate at different rates as light travels over the large cosmic distances.
The researchers used observations of X-rays and gamma-rays from very distant quasars—luminous sources produced by matter falling towards supermassive black holes—to test models of spacetime foam. The authors predicted that the accumulation of distance uncertainties for light traveling across billions of light-years would cause the image quality to degrade so much that the objects would become undetectable. The wavelength where the image disappears should depend on the model of spacetime foam used.
Chandra's X-ray detection of quasars at distances of billions of light-years rules out one model, according to which photons diffuse randomly through spacetime foam in a manner similar to light diffusing through fog. Detections of distant quasars at shorter, gamma-ray wavelengths with Fermi and even shorter wavelengths with VERITAS demonstrate that a second, so-called holographic model with less diffusion does not work.
"We find that our data can rule out two different models for spacetime foam," said co-author Jack Ng of the University of North Carolina in Chapel Hill. "We can conclude that spacetime is less foamy that some models predict."
The X-ray and gamma-ray data show that spacetime is smooth down to distances 1,000 times smaller than the nucleus of a hydrogen atom.
These results appear in the May 20th issue of The Astrophysical Journal but by now you could find more information I the following link:
http://arxiv.org/pdf/1411.7262v5.pdf