Search This Blog

Tuesday, May 8, 2012

பாசிப்பயறு அல்லது பயறு அல்லது பயத்தம் பருப்பு அல்லது பாசிப் பருப்பு


பாசிப்பயறு அல்லது பயறு அல்லது பயத்தம் பருப்பு அல்லது பாசிப் பருப்பு என்பது ஒருவகைப் பருப்பு ஆகும். தெற்காசியாவைப் பூர்வீகமாகக் கொண்ட இப்பயிர் இங்கேயே பெரிதும் பயிரிடப்படுகிறது. தமிழர் சமையலிலும் இது முக்கிய இடத்தைப் பெற்றிருக்கிறது. கொழுக்கட்டை, மோதகம் ஆகியவை இந்தப் பயற்றைப் பயன்படுத்தியே செய்யப்படுகின்றன. முளைக்க வைத்தும் சமைக்கப்படுவதுண்டு. கஞ்சியிலும் இது சேர்கப்படுவதுண்டு. தமிழ்நாட்டில் கன்னியாகுமரி, திருநெல்வேலி மற்றும் தூத்துக்குடி மாவட்டங்களில் இந்தப் பருப்பைக் கொண்டு செய்யப்படும் “பாசிப்பருப்பு பாயசம்” மிகவும் புகழ் பெற்றது.
பயறு என்பது தமிழில் காணப்படும் பொதுப்பெயராகும். இதில் பச்சைப்பயறு என்றும் தட்டைப்பயறு என்றும் இரு வேறு பயறுகள் உள. நமது அன்றாட உணவில் புரதம் நிறைந்த ஆரோக்கியத்திற்கு உறுதுணையாக இருக்கும் உணவு வகைகளில் பயறு சிறப்பான இடத்தைப் பிடிப்பதாகும். லெக்யூம் குடும்பத்தைச் சேர்ந்த காய்கறி விதைகளே பயறுகள் ஆகும். ஆங்கிலத்தில் கடினமான மேற்புறத் தோல் அல்லது மேல் பரப்பைக் கொண்ட விதைகளை பல்ஸ் என குறிப்பிடுகின்றனர். இவற்றில் புரதசத்து மிகுந்துள்ளது. இவை ஊன் உணவிற்கு இணையானவை. எனவே, அவற்றை உண்பது உடலுக்கு அதிக புரதம் கிடைத்திடச் செய்யும்.
தொன்றுத் தொட்டு ஊன் உணவு உண்ணாதவர்களால் பயறுகள் பெரிதும் பயன்படுத்தப்பட்டுள்ளது. மற்ற தாவரங்களை விட இவை சத்துக்கள் கூடுதலாகவும் குறைந்த ஈரப்பதம் உள்ளனவாகக் காணப்படுகின்றன. எனவே, இவற்றை எளிதாக பல நாட்கள் பாதுகாப்பாக வைத்திருக்க இயலும். இப்பயறுகள் உலர்ந்து விதைகளாக மாறுவதற்கு முன்னரும் உண்ண உகந்தவை. ஆனால், நன்கு முதிர்ந்த பயறு வகைகளிலேயே அதிக சத்துக்களும் குறைவான ஈரப்பதமும் காணப்படுகின்றன. புன்செய் நிலங்களில் விளையக் கூடிய தானியங்களில் சிறந்த உணவுச் சத்துள்ளது பயறு என்றால் அது மிகையல்ல. முதிராத காய்களில் புரதம் குறைவாகவும், வைட்டமின் மற்றும் மாவுச்சத்து அதிகமாகவும் காணப்படும். ஆனால் முதிர்ந்த பயறு வகைகளில் 20-28% புரதச்சத்தும் 60% கார்போஹைட்ரேட் எனும் மாவுச்சத்தும் காணப்படுகின்றன. அதிலும் சோயா பயறில் 48% புரதமும், 30% மாவுச்சத்தும் காணப்படுகின்றது. இது பயறு வகைகளிலேயே அதிகம்.
கால்சியம், பாஸ்பரஸ், இரும்புச்சத்து போன்ற சத்துக்களும், தியாமின், நியாசின் போன்ற வைட்டமின்களும் இவற்றில் கூடுதலாகும். 100 கிராம் பயறில் 24.5 கிராம் புரதம், 140 மிகி. கால்சியம், 30 மி.கி. பாஸ்பரஸ், 8.3 மி.கி. இரும்புச்சத்து, 0.5மி.கி. தயாமின், 0.3மி.கி. ரிபோபிளேவின், 2.0மி.கி. நியாசின் போன்றவை உள்ளது. சராசரியாக பயறு வகைகளில் 345 கிலோ எரி சக்தியும் உள்ளன.
பயறுகளும், தானியங்களும் பல மருத்துவ குணங்கள் கொண்டவை. பயறு வகைகளில் அமினோ புளிமங்களும் குறிப்பாக லைசின் மிக அதிக அளவுகளில் காணப்படுகின்றது. ஆனால், தானியங்களில் லைசின் குறைவாகவே இடம் பெற்றிருக்கின்றன. பயறு வகைகளில் அதிகமாக வைட்டமின் பி காம்ப்ளெக்ஸ், ரிபோபிளேவின் அதிகம் அடங்கியுள்ளது. எனவே, பயறு வகைகள் வைட்டமின் பி பற்றாக்குறையை தவிர்த்திடும். பச்சை பயறு மற்றும் தட்டைப்பயரில் புரதச்சத்துக்கள் மிகுந்து காணப்படுகிறது. அதை அப்படியே பயன்படுத்துவதை விட, முளைக்கட்டி பயன்படுத்துவதன் மூலம் நல்ல பயன் கிடைக்கும். முளைக்கட்டிய பயறில் வாயுத்தன்மை என்னும் குறைபாடுகளை உண்டுச்செய்யும் தன்மைக்கிடையாது. எளிதில் செரிமாணமும் ஆகும். பயறுகள் முளைவிடும் தருவாயில் அஸ்கார்பிக் அமிலமான வைட்டமின் சி அதிகம் காணப்படுகின்றது. முளைக்கட்டிய பயறுகளில் பிற வைட்டமின்களும் கூடுதலாகக் காணப்படுகின்றன. இவை முளை வளர வளர கூடிக் கொண்டே போகிறது. முளைக்கட்டிய பயிறை அப்படியே பச்சையாகவே சாப்பிடலாம். பச்சை வாசனை பிடிக்காதவர்கள் ஆவியில் 5 நிமிடம் வேக வைத்து பின்னர் வெல்லம்/சர்க்கரை இட்டும் சாப்பிடலாம். வெந்த பயறை கூட்டு, பொரியல் ஆகியவற்றிலும் சேர்த்து உண்ணலாம்.
மருத்துவக் குணங்கள்:
புன்செய் நிலங்களில் விளையக் கூடிய தானியங்களில் சிறந்த உணவுச் சத்துள்ளது பயறு. சிறந்த புஷ்டியும், பலமும் தரும். இது சீக்கிரம் ஜீரணமாவதும் வயிற்றில் வாயுவை அதிகமாக உண்டாக்காமல் இருப்பதும் தான் காரணம். அறுவடையாகி ஆறுமாதங்கள் வரை தானிய சுபாவத்தை ஒட்டிப் புது தானியத்தின் குணத்தைக் காட்டும்.
கபத்தைச் சற்று அதிகமாக உண்டாக்கக் கூடும். ஆறு மாதங்களுக்கு மேற்பட்டு அது மிகவும் சிறந்த உணவாகிறது. ஓராண்டிற்குப் பின் அதன் வீரியம் குறைய ஆரம்பிக்கும். தோல் நீக்கி லேசாக வறுத்து உபயோகிக்க மிக எளிதில் ஜீரணமாகக் கூடியது.
நீர்த்த கஞ்சி, குழைந்த கஞ்சி, பாயசம், வேகவைத்த பருப்பு, துவையல், ஊறவைத்து வறுத்து உப்பு, காரமிட்ட பயறு, சுண்டல், கறிகாய்களுடன் சேர்த்து அரைகுறையாக வெந்த கோசுமலி, பொங்கல் எனப் பலவகைகளில் உணவுப் பொருளாக இது சேர்கிறது.
பயறு பல வகைப்படும். பாசிப் பயறு, நரிப் பயறு, காராமணி, தட்டைப் பயறு, பயற்றங்காய், மொச்சைப் பயறு என்று. இவற்றில் நரிப் பயறு மருந்தாகப் பயன்படக்கூடியது. தட்டைப் பயறும், காராமணியும் பயறு என்ற பெயரில் குறிப்பிடப்படுபவையாயினும் வேற்றினத்தைச் சேர்ந்தவை. தட்டைப் பயிறு இனத்தைச் சார்ந்த பயற்றங்காய் நல்ல ருசியான காய்.
பச்சைப் பயறு இரண்டுவிதமாகப் பயிரிடப்படுகின்றன. புஞ்சை தானியமாகப் புஞ்சைக் காடுகளில் விளைவது ஒருவகை. நஞ்சை நிலங்களில் நெல் விளைந்த பின் ஓய்வு நாட்களில் விளைச்சல் பெறுவது ஒருவகை. புஞ்சை தானியமாக விளைவது நல்ல பசுமையுடனிருக்கும். மற்றது கறுத்தும், வெளுத்த பசுமை நிறத்திலும், சாம்பல் நிறத்துடனும் காணப்படும். இரண்டும் சற்றே குறைய ஒரே குணமுள்ளவை தான்.
பயறு துவர்ப்புடன் கூடிய இனிப்புச் சுவையும், சீத வீரியமுள்ளதுமாகும். நல்ல ருசி உடையது. பசியைத் தூண்டி எளிதில் ஜீரணமாகக் கூடியது. ரத்தத்தில் தெளிவை ஏற்படுத்திக் கொதிப்பைக் குறைக்கும். ரத்தத்தில் மலம் அதிகமாகத் தங்காமல் வெளியேறிவிடும். ஆகவே ரத்தம் கெட்டு நோய்கள் ஏற்படுவதை இது குணப்படுத்தும். சிறுநீர் தேவையான அளவில் பெருகவும், வெளியேறவும் இது உதவும். கபமோ, பித்தமோ அதிகமாகாமல் உடலை ஒரே சீராகப் பாதுகாக்கும்.
பயற்றம் பருப்பை வேக வைத்த தண்ணீரை உப்பும், காரமும் சேர்த்து நோயுற்ற பின் மெலிந்து பலக்குறையுள்ளவர்கள் சாப்பிடக் களைப்பு நீங்கிப் பலம் உண்டாகும்.
உபவாசமிருப்பவர்கள் ஏதேனும் ஒரு வேளை லகுவாக உணவேற்பதாயின் பயற்றங் கஞ்சித் தெளிவுடன் பாலும், சர்க்கரையும் சேர்த்து உண்பர். சீக்கிரம் ஜீரணமாவதுடன் உபவாச நிலையில் அதிகரித்துள்ள பித்தத்தின் சீர் கேட்டைத் தணிக்க இது பெரிதும் உதவும்.
பச்சைப் பயிரை வேக வைத்து கடுகு, சின்ன வெங்காயம், தாளித்து உப்பு சேர்த்து சப்பாத்திக்குத் தொட்டுக் கொள்ள கூட்டாகவும் உபயோகிக்கலாம். இது மிகவும் சத்தானது.
தலையில் உள்ள எண்ணெய்ப் பசையை நீக்க இதன் தூள் மிகச் சிறந்தது. தலைக்கும், கண்ணுக்கும் குளிர்ச்சி தரும். சிகைக்காய் போன்றவை ஒத்துக் கொள்ளாத போது இது அதிகம் உதவுகின்றது. இதன் மாவை வெந்நீர் விட்டுக் களியாகக் கிளறி தாய்ப்பால் தரும் மாதரின் மார்பில் பற்றிட பால்க்கட்டு குறைந்து வீக்கம் குறையும். மார்பின் நெறிக் கட்டிகளும் குறையும்.
பச்சைப் பயறை ஈரல் சம்பந்தப்பட்ட நோய் உள்ளவர்கள் அதிகமாகச் சாப்பிடக் கூடாது.
பச்சைப் பயறின் தன்மை ஈரலின் ‌பிர‌ச்‌சினையை அ‌திகமா‌க்கு‌ம்.
எனவே ஈரலில் கல் இருப்பவர்களோ, பிரச்சினை உள்ளவர்களோ பச்சைப் பயறை குறைவாக உணவில் சேர்த்துக் கொள்ளலாம்.
மேலும் பச்சைப் பயறை வேக வைத்து அ‌ந்த நீரை வடித்துவிட்டுச் சாப்பிடுவது மிகவும் நல்லது.
ப‌ச்சை‌ப் பயறை அ‌திக‌ம் சா‌ப்‌பி‌ட்டா‌ல் உட‌ல் அ‌திக கு‌ளி‌ர்‌ந்த த‌ன்மையை அடை‌ந்து‌விடு‌ம். எனவே ஆ‌ஸ்துமா, சைன‌ஸ் போ‌ன்ற நோயு‌ள்ளவ‌ர்க‌ள் கவனமாக கையாள வே‌ண்டு‌ம்.

Planets for Deaf and Dumb



Ears are very important sense organs of our body, associated with the sense of hearing. In a Nativity, the 3rd house and sign Gemini (3rd house of natural zodiac) are connected with hearing; and Aakash Tattva, governed by Jupiter, is responsible for manifesting the Sound, which the ears can hear. The 2nd house and sign Taurus (the 2nd house of natural zodiac) is connected with organs of speech (Larynx and Vocal Cords etc). The planet Mercury is karaka of expression and communication. Any affliction to the planets Jupiter and Mercury, 2nd and 3rd house of the nativity and Gemini and Taurus at the time of cause the problem of hearing and speech. Mercury governs the nervous system and nerves. Damage to speech and hearing is due to sensory loss or afflicted nerves responsible for these functions. And finally, Lagna and Lagna-lord should be associated with these afflictions.
If Mercury is conjuncted or aspected or square or opposition with Saturn or eclipsed creates deformity with speech such as stammering, because Mercury is 6th lord of natural zodiac. If Mercury is afflicted as above by Mars or Saturn in watery sign, Cancer, Scorpio and Pisces, also known as Mute sign, the native will suffer from impediments in speech. Mercury in 6th along with lord of the lagna and conjuncted or afflicted by Sun or Mars or Saturn it causes impediments in Speech.
If Saturn is posited in any Chatushpada sign, Aries, Taurus, Leo, first half of Capricorn and 2nd half of Sagittarius, or watery sign, it causes impediments in speech and hearing.
Airy sign, Gemini, Libra and Aquarius, if afflicted cause impediments in hearing.
We should not forget that 6th house is the house of diseases and 8th and 12th houses are included in trik houses. The planets posited in these houses and the position of the lord of the these houses in any house or association or aspect of the lord of these houses with the lord of other houses destroy the signification of that house whose lord is associated or aspected. More over dasha and bhukti should also be of related planets.
If the afflicted planets are under the influence of benefic planet, there will be some protection to the native. The eclipse during the birth of child may cause impediment of speech if Mercury is afflicted. The retrograde planet, even retrograde Jupiter in lagna, does not give protection.

Lifelong depression may increase risk of vascular dementia



Depressive symptoms that occur in both midlife and late life are associated with an increased risk of developing vascular dementia, while symptoms that occur in late life only are more likely to be early signs of Alzheimer's disease, according to University of California at San Francisco and Kaiser Permanente researchers.
The study, which appears in the current issue of the Archives of General Psychiatry, is the first to examine whether midlife or late-life depression is more likely to lead to either Alzheimer's disease or vascular dementia in the long term. The researchers explain that vascular dementia, the second most common type of dementia, develops when impaired blood flow to parts of the brain deprives cells of nutrients and oxygen.
"People who had depressive symptoms in both midlife and late life were much more likely to develop vascular dementia, while those who had depressive symptoms in late life only were more likely to develop Alzheimer's disease," said the study's lead author Deborah E. Barnes, PhD, MPH, with the UCSF Departments of Psychiatry and Epidemiology & Biostatistics and the San Francisco Veterans Affairs Medical Center.
"The findings have important public health implications because they raise hope that adequate treatment of depression in midlife may reduce dementia risk, particularly vascular dementia, later in life," added Rachel Whitmer, PhD, a research scientist at the Kaiser Permanente Northern California Division of Research and the principal investigator of the study.
UCSF and Kaiser Permanente investigators examined the association between depressive symptoms and dementia over the course of 45 years in a longitudinal study of more than 13,000 long-term members of the Kaiser Permanente Northern California integrated care delivery system. The study population consisted of members who participated in a voluntary health examination called the Multiphasic Health Checkup in San Francisco and Oakland during 1964-1973 when they were 40-55 years old.
Participants were evaluated for depressive symptoms in midlife as part of the Multiphasic Health Checkup and again in late life between 1994-2000. Between 2003-2009, 3,129 participants were diagnosed with dementia.
Though more research is needed, the findings suggest that depression that begins in late life may be an early symptom of Alzheimer's disease, while chronic depression over the life course may reflect a long-term process of changes to blood flow in the brain associated with increased risk of vascular dementia.
More information: Arch Gen Psychiatry. 2012;69[5]:493-498.
Provided by Kaiser Permanente
"Lifelong depression may increase risk of vascular dementia." May 7th, 2012. http://medicalxpress.com/news/2012-05-lifelong-depression-vascular-dementia.html
Posted by
Robert Karl Stonjek

Nanocomposite Cavity Filler Reverses Decay, Killing Bacteria and Regenerating Tooth Structure




Fighting Tooth Decay U.S. Navy
Dentists may soon be getting a potent new weapons with which to wage the global fight against cavities. The University of Maryland has developed a novel new nanocomposite material that can be used not only as filling for cavities, but that will also kill any remaining bacteria in the tooth and regenerate the actual structure lost to decay.
The nanocomposite is made up of silver nanoparticles and calcium phosphate nanoparticles, both of which are piped into the tooth as filler for a cavity. The silver nanoparticles along with a few other ingredients in the material kill off whatever bacteria is still lingering inside the tooth, paving the way for the calcium phosphate to regenerate tooth minerals. Over time, the tooth strengthens again.
But as IEEE Spectrum notes, the silver nanoparticles could prove to be problematic, and this is probably why this treatment is offered as a cavity filling rather than a toothpaste or mouthwash. Silver nanoparticles aren’t totally understood, and there have been some concerns voiced about the potential risks and perils associated with ingesting the stuff. The nanocomposite is currently undergoing both human and animal testing right now, hopefully with an eye toward clarifying and alleviating any health concerns. If the composite can pass muster, dentists everywhere can get down to the business of rolling back the clock on cavities.

Screening for Breast Cancer Without X-Rays: Lasers and Sound Merge in Promising Diagnostic Technique


Diagnostic images of a mixed infiltrating lobular and ductal carcinoma in the right breast of a 57 year old patient. The cranio-caudal x-ray mammogram (left) showed an architectural distortion of about 22 mm in the lateral part of the right breast. Ultrasonography (middle) showed the presence of an unsharply edged hypoechoic lesion with a hyperechoic border at the expected locationPhotoacoustic mammography (right) showed a confined high-contrast abnormality with a contrast in excess of 5 and a maximum diameter of 14 mm at the expected lesion depth. Here, a transversal cross-section through this abnormality is visualized. (Credit: Image courtesy of Michelle Heijblom, University of Twente)
Science Daily  — X-ray mammography is an important diagnostic tool in the fight against breast cancer, but it has certain drawbacks that limit its effectiveness. For example, it can give in false positive and negative results; it also exposes women to low doses of ionizing radiation, which -- while accepted as safe -- still carry some risk.

In the first phase of clinical testing of a new imaging device, researchers from Netherlands' University of Twente and Medisch Spectrum Twente Hospital in Oldenzaal used photoacoustics -- light-induced sound -- rather than ionizing radiation to detect and visualize breast tumors. The team's preliminary results, which were conducted on 12 patients with diagnosed malignancies and reported today in the Optical Society's (OSA (http://www.osa.org)) open-access journal Optics Express(http://www.opticsinfobase.org/oe), provide proof-of-concept support that the technology can distinguish malignant tissue by providing high-contrast images of tumors.
"While we're very early in the development of this new technology, it is promising. Our hope is that these early results will one day lead to the development of a safe, comfortable, and accurate alternative or adjunct to conventional techniques for detecting breast tumors," explained researcher Michelle Heijblom, a Ph.D. student at the University of Twente.
Photoacoustics, a hybrid optical and acoustical imaging technique, builds on the established technology of using red and infrared light to image tissue and detect tumors. This technology, called optical mammography, reveals malignancies because blood hemoglobin readily absorbs the longer, redder wavelengths of light, which reveals a clear contrast between blood-vessel dense tumor areas and normal vessel environments. However, it is difficult to target the specific area to be imaged with this approach.
As a means of improving this, the researchers combined the light-based system's ability to distinguish between benign and malignant tissue with ultrasound to achieve superior targeting ability. The result of their refinements is a specialized instrument, the Twente Photoacoustic Mammoscope (PAM), which was first tested in 2007.
The device is built into a hospital bed, where the patient lies prone and positions her breast for imaging. Laser light at a wavelength of 1,064 nanometers scans the breast. Because there is increased absorption of the light in malignant tissue the temperature slightly increases. With the rise in temperature, thermal expansion creates a pressure wave, which is detected by an ultrasound detector placed on one side of the breast. The resulting photoacoustic signals are then processed by the PAM system and reconstructed into images. These images reveal abnormal areas of high intensity (tumor tissue) as compared to areas of low intensity (benign tissue). This is one of the first times that the technique has been tested on breast cancer patients.
By comparing the photoacoustic data with conventional diagnostic X-rays, ultrasound imaging, MRI, and tissue exams, the researchers showed that malignancies produced a distinct photoacoustic signal that is potentially clinically useful for making a diagnosis of breast cancer. The team also observed that the photoacoustic contrast of the malignant tissue is higher than the contrast provided by the conventional X-ray mammographies.
In looking to the future, notes Heijblom, "PAM needs some technical improvements before it is a really valuable clinical tool for diagnosis or treatment of breast cancer. Our next step is to make those improvements and then evaluate less obvious potential tumors, benign lesions, and normal breasts with it."

Using Magnetic Bacteria to Construct the Biocomputer of the Future



Magnetospirilllum magneticum University of Leeds
As computer components grow smaller and smaller it becomes more and more difficult to manufacture them by conventional means, meaning the nano-hard-drives of the future are going to come at a cost. So researchers from the University of Leeds in the UK and Tokyo University of Agriculture and Technology are enlisting the help of magnetic bacteria, which they say can be harnessed to build tiny computing components similar to those found in conventional PCs, or even to construct the biological computers of the future.
The bacterium Magnetospirilllum magneticum is a naturally occurring microorganism that lives in underwater environs, using its natural magnetism to swim up and down the Earth’s magnetic field lines in search of oxygen. But when they eat iron, special proteins generate tiny crystals of the mineral magnetite within the bacteria, imbuing them with a tiny piece of one of the more magnetic natural materials on the planet.

By feeding the bacteria iron and manipulating the way they colonize, the researchers think they can essentially grow tiny magnets that could serve as components in the minuscule hard drives of the future. Whereas it’s very difficult to make very small magnets and shape them so that they can serve as memory devices, these proteins and the bacteria in which they reside can be coaxed into doing all the hard work, creating the magnetic material and churning out regularly-shaped blocks of it.
Moreover, the team has been working to produce tiny electrical wires that allow the exchange of information through cell membranes, allowing for nanoscale communication inside of a computer made up of biological cells. Because these “wires”--they’re really more like nano-scale tubes with an electrical resistance that pass through the cell wall--are covered in cell membrane, they are highly biocompatible. That of course throws open the door to all kinds of wild ideas blurring the line between the electro-mechanical and the biological, like biocompatible computers that could aid in human surgery--or even live permanently inside the human body. Somebody get Kurzweil on the line.
[via BBC]

Language diversity around the world


Speaking in tongues

 by The Economist online

DESPITE the idea that English is spoken in America, Chinese in China, and Russian in Russia, most of the world is far more diverse than the presence of big national languages suggests. In fact, monolingual countries are hard to find. The chart below measures language diversity in two very different ways: the number of languages spoken in the country and Greenberg's diversity index, which scores countries on the probability that two citizens will share a mother tongue. America, Russia, Brazil, China and Mexico have over 100 languages each, but score relatively low on the diversity index, because English, Russian, Portuguese, Chinese and Spanish have grown to the point where they threaten to destroy the many tiny native languages. By contrast, linguistic rivalry and relative poverty have kept a single language from dominating countries like India and Nigeria, which score high on the diversity index. Geography is an additional factor. The many islands of Indonesia and the Philippines shelter small languages despite those countries’ middle-income status. Both poverty and geography combine to make Congo and Papua New Guinea the most linguistically diverse countries in the world.

Lack of vitamin D worsens lupus



MONASH UNIVERSITY   
Share on print
magdasmith-Sun-iStock
Sunlight can make some aspects of lupus worse, so further research is needed to work out how vitamin D levels could be safely increased in patients.
Image: magdasmith/iStockphoto
Lupus patients show more severe symptoms of the disease if their vitamin D levels are low, an Australian-first study has found.

Systemic lupus erythematosus (SLE), which affects more than five million people worldwide, was found to be worse in vitamin D deficient SLE patients than in those with normal levels, in the study led by Professor Eric Morand, head of the Monash Lupus Clinic and Southern Clinical School at Monash Medical Centre.

The research also observed that Australians are more susceptible to the disease due to environmental, genetic and cultural factors, which contribute to vitamin D deficiency.

Professor Morand said although practicing sun avoidance is important for lupus patients, as sunlight can make aspects of the disease worse, this can lead to vitamin D deficiency and an increase in the severity of the disease.

“In multicultural Australia, instances of vitamin D deficiency can be seen in cultural groups where clothing covers the body, in people with dark skin tone who have lower absorption, and those who practice sun avoidance” Professor Morand said.

“Although it’s too soon to draw conclusions about the long-term safety and effectiveness of vitamin D supplements in lupus, a clinical trial is the next step proving that supplementing vitamin D makes lupus better.”

For Professor Morand, the battle to find new treatments carries added significance. His sister Maxine Morand, CEO of Breast Cancer Network Australia, was diagnosed with lupus more than 20 years ago, coincidentally around the same time he started researching the disease.

Ms Morand, a former nurse and Victorian Minister, said she was just 26 when she discovered she had the autoimmune disease, meaning the body's immune system attacks itself.

“As a patient with vitamin D deficiency, I’m fascinated by these findings,” Ms Morand said.

“If it can be proved that vitamin D supplementation improves outcomes for the patient and reduces symptoms, then it could significantly improve their quality of life.”

For Ms Morand, symptoms include bouts of extreme tiredness, hair loss, skin rashes and sun-intolerance.

The findings will be presented at the Annual Scientific Meeting of the Australian Rheumatology Association in Canberra from 11 to 15 May, coinciding with the observance of World Lupus Day on 10 May.

The research involved five years of clinical data and blood sample collection from the Monash Lupus Clinic at the Monash Medical Centre, the only lupus-dedicated clinic in Australia.
Editor's Note: Original news release can be found here.

How does a broken DNA molecule get repaired?




Scientists from the Kavli Institute of Nanoscience at Delft University of Technology have discovered a key element in the mechanism of DNA repair.

When the DNA double helix breaks, the broken end goes searching for the similar sequence and uses that as a template for repair. Using a smart new dual-molecule technique, the Delft group has now found out how the DNA molecule is able to perform this search and recognition process in such an efficient way. This week, the researchers report their findings in Molecular Cell.
Artist's Impression of RecA-Protein DNA Molecule (Broken End) and DNA Molecule
After a DNA molecule breaks, the broken ends search for an intact DNA region with the same sequence in order to get repaired. The image shows an artist impression of the contact point between a RecA-protein DNA molecule (the "broken end"; horizontal) and a DNA molecule (vertical), where it is probed whether both molecules have the same sequence. If they do not, they will break the contact. If the same sequence is found however, the molecules stably bind and the repair process is initiated. The present study discovered the mechanism of the recognition process from dual molecule experiments where individual DNA molecules can be manipulated with beads. Credit: Image courtesy Cees Dekker lab TU Delft / Tremani

A staggering problem

Sometimes, the DNA double helix gets broken: both strands are accidentally cut. This presents a vital problem because cells cannot cope with such damaged DNA. Genomic DNA instabilities such as these, are a known cause of cancer. The good news is that an intricate DNA repair system exists which is impressively error-proof and efficient. How does this work?
First, proteins form a filamentous structure on the broken DNA end. Second, this filament examines recently copied DNA or the second DNA chromosome (remember that we have two copies of each chromosome) in search of a DNA sequence that matches that of the broken end. Note that this is a daunting task: given that, for example, our human genome contains three billion base pairs, finding your few hundred base pairs of interest, is really like finding a needle in a haystack.
‘Still this search process occurs within minutes and with great efficiency. How that is achieved, has been a mystery for decades. The new experiments from our group now resolve this by revealing the key step in the process, the molecular recognition step’, says scientist Iwijn de Vlaminck, who was the postdoc that did the experiments in the group of prof. Cees Dekker at Delft.

Search operation

‘In bacteria, the so-called RecA protein is responsible for conducting the search operation. In E. coli bacteria, a filament of RecA protein formed on DNA, searches and pairs a sequence within a second DNA molecule with remarkable speed and fidelity. To do so, individual molecules of RecA first come together to form a filamentous structure on the broken DNA. The filament then grabs DNA molecules in its vicinity and compares their sequence to the sequence of the broken DNA. When a sequence match is found, both molecules bind tightly to one another allowing repair to ensue’, says De Vlaminck (since recently at Stanford University).
‘We found that the filament’s secondary DNA-binding site interacts with a single strand of the incoming double-stranded DNA during homology sampling. Recognition is achieved upon binding of both strands of the incoming DNA to each of two DNA-binding sites in the filament.’
The data indicate that the fidelity of the search process is governed by the distance between the DNA binding sites. The Delft experiments clarify what exactly happens in the sequence comparison of the two molecules, making clear why a ‘wrong’ sequence leads to quick dissociation of the molecules while a ‘correct’ sequence makes a strong bond leading up to further repair. These are the two elements that lead to the impressive speed and high efficiency of the DNA repair process.

New instrument

The team from TU Delft developed a unique new instrument that makes it possible to independently manipulate an individual DNA molecule and an individual RecA filament and to measure the strength of intermolecular interactions. This dual-molecule manipulation instrument combines magnetic-tweezer and laser-trapping-based DNA-molecule manipulation with a laminar flow system. The setup also allowed to unwind the DNA helix a bit, thus opening local regions where the normal duplex was destabilized. This effect turned out to be crucial for the molecular recognition process. Thus, the team was able to directly probe the strength of the two-molecule interactions involved in search and recognition and build a new model for it.
__________

Scientists show how a gene duplication helped our brains become ‘human’



Extra copy of brain-development gene allowed neurons to migrate farther and develop more connections; findings may offer clue to autism and schizophrenia

What genetic changes account for the vast behavioral differences between humans and other primates? Researchers so far have catalogued only a few, but now it seems that they can add a big one to the list. A team led by scientists at The Scripps Research Institute has shown that an extra copy of a brain-development gene, which appeared in our ancestors’ genomes about 2.4 million years ago, allowed maturing neurons to migrate farther and develop more connections.

A team led by Scripps Research Institute scientists has found evidence that, as humans evolved, an extra copy of a brain-development gene allowed neurons to migrate farther and develop more connections. Credit: Photo courtesy of The Scripps Research Institute
Surprisingly, the added copy doesn’t augment the function of the original gene, SRGAP2, which makes neurons sprout connections to neighboring cells. Instead it interferes with that original function, effectively giving neurons more time to wire themselves into a bigger brain.
“This appears to be a major example of a genomic innovation that contributed to human evolution,” said Franck Polleux, a professor at The Scripps Research Institute. “The finding that a duplicated gene can interact with the original copy also suggests a new way to think about how evolution occurs and might give us clues to human-specific developmental disorders such as autism and schizophrenia.”
Polleux is the senior author of the new report, which was published online ahead of print on May 3, 2012 by the journal Cell. The same issue features a related paper on SRGAP2′s recent evolution by the laboratory of Evan E. Eichler at the University of Washington, Seattle.
Polleux specializes in the study of human brain development, and, several years ago, his lab began researching the function of the newly-discovered SRGAP2. He and his colleagues found that in mice, the gene’s protein product plays a key role during brain development: It deforms the membranes of young neurons outward, forcing the growth of root-like appendages called filopodia. As young neurons sprout these filopodia, they migrate more slowly through the expanding brain;
eventually they reach their final position where they form connections. Most excitatory connections made on pyramidal neurons in the cortex are formed on spines, which are microscopic protrusions from the dendrite playing a critical role in integrating synaptic signals from other neurons.
Shortly after beginning the project, Polleux learned from other labs’ work that SRGAP2 was among the few genes (approximately 30) that had been duplicated in the human genome less than six million years ago after separation from other apes. “These evolutionarily recent gene duplications are so nearly identical to the original genes that they aren’t detectable by traditional genome sequencing methods,” said Polleux. “Only in the last five years have scientists developed methods to reliably map these hominid-specific duplications.”
Hardly any of the newfound human-specific gene duplications had been characterized functionally. SRGAP2, already being studied by Polleux’s lab, was an exception; its prominent role in brain maturation made its recent duplication a possible factor in human evolution. So Polleux and his colleagues set out to determine whether SRGAP2′s duplication had affected its function in the human brain.
It was a challenging task, since SRGAP2′s duplicates are nearly indistinguishable from the original and are found only in human cells so they can’t be studied in lab mice. As a first step, Polleux and his colleagues performed a detailed search of human cells’ chromosome 1, where SRGAP2 resides, and confirmed the presence of two nearby copies, which they named SRGAP2B and SRGAP2C, that are more than 99 percent identical with the original copy re-named SRGAP2A in humans. These preliminary results were subsequently confirmed by Eichler’s laboratory, which fully sequenced and assembled SRGAP2 gene duplicates as reported in an accompanying paper in the same issue of Cell.
After developing sensitive probes to distinguish these genes and their protein products from those of the original SRGAP2A, the researchers looked for their expression in human cell and brain-tissue cultures. The scientists determined that only one, SRGAP2C, was biologically active and expressed at high levels. The SRGAP2C protein turned out to be a truncated version of the original SRGAP2 protein. It lacks SRGAP2′s ability to promote neuronal spine maturation, but it is far from inert: it latches onto the original, full-length SRGAP2 protein and inhibits its normal functions.
Polleux’s team expressed human SRGAP2C in vivo in mouse cortical neurons throughout development and found that the effects on brain development were essentially the same as those they observed when the scientists blocked the expression of the original SRGAP2 gene. The affected neurons—pyramidal neurons, the major neurons of the cortex—migrated faster and took much longer to sprout their full complement of dendritic spines. This delayed spine maturation had an unexpected effect: pyramidal neurons ultimately formed many more spines when they finally matured—just like human pyramidal neurons.
Curiously, these dendritic spines also had the longer necks seen on human pyramidal neurons. “Other researchers have argued that as spine density increased during human evolution, longer spine necks might be needed to provide greater electrical and biochemical isolation and thus keep the neurons from becoming hyper-excitable and prone to triggering seizures,” Polleux said. “SRGAP2C seems to be important for that key evolutionary change.”
Interestingly, Polleux and colleagues found that mice with deleted SRGAP2 are prone to seizures. “A genetic study published by another laboratory in Japan last November found similar results in children born with rare SRGAP2 gene mutations,” noted Polleux.
Oddly enough, SRGAP2B, the relatively inactive duplication of SRGAP2, was the one that occurred first—roughly 3.4 million years ago, according to Eichler’s genomic dating techniques. The active SRGAP2C appeared even more recently through duplication of SRGAP2B, with about 1 million years separating the two duplications. SRGAP2C emergence occurred roughly 2.4 million years ago—corresponding approximately to the time when the Australopithecus and the Homo lineages separated. Taken together, the results from the Eichler and Polleux labs suggest that SRGAP2C duplication in the Homo lineage might have provided a selective advantage in part by slowing the rate of spine maturation allowing the emergence of more connections between cortical neurons.
About 30 other protein-coding genes were duplicated as the early hominid genome evolved towards the modern human one, and Polleux’s lab is now working with Eichler’s to characterize the ancestral copies of these genes and their human-specific duplications. “There was probably a co-evolution of these genomic changes that together made the human brain unique,” Polleux said.
The study of human-specific gene duplications could lead to a better understanding of human developmental disorders. Autism and schizophrenia, for example, are known to feature abnormal neuronal connectivity and affect synaptic development, but have been difficult to model accurately in mouse models. Gene duplications such as SRGAP2C, which normally don’t occur in mice, could provide important missing pieces of these puzzles. “We plan to augment existing mouse models by adding some of these human-specific gene duplications,” said Polleux. This approach, called “humanization,” has been used successfully in other fields such as immunology for the past two decades to model disease mechanisms but has so far not been applied to neuroscience. The Polleux and Eichler groups also plan to team up to conduct human genetic studies to determine if mutations or other copy-number variations in SRGAP2C or other human-specific duplications lead to neurodevelopmental disorders.
“This human-specific portion of the genome has not been looked at so far since it is poorly assembled, but we suspect that it might contain the answers to some long-standing mysteries about human diseases,” Polleux said.
________
The first authors of the paper, “Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny of spine maturation,” were Cécile Charrier and Kaumudi Joshi of Polleux’s laboratory in the Dorris Neuroscience Center at The Scripps Research Institute; other contributors were Jaeda Coutinho-Budd and Jacqueline de Marchena Powell of the University of North Carolina; Ji-Eun Kim and Anirvan Ghosh of UC San Diego; Pierre Vanderhaegen of the Université Libre de Bruxelles; and Takayuki Sassa of Hokkaido University.
Funding for the research came from the National Institute for Health (NINDS) and ADI-Novartis funds.