Search This Blog

Saturday, November 5, 2011

அடப் போப்பா..உனக்கு இதே வேலையா போச்சு.. ! ( யாரும் இந்த கட்டுரையைப் படிக்காதீங்க பாஸூ..!)




http://www.visvacomplex.com/image/paramacharyar.jpg
வாழ்க்கை முழுக்க , கம்பெனி, வேலை - சம்பளம் , அதுல குடும்பத்தை ஓட்டனும் ... இப்படியே அடுத்தவங்களுக்கு வேலை செஞ்சு , அப்படியே வாழ்க்கையை முடிச்சிடப் போறோமா? கடைசி காலத்துல, உடம்பு எல்லாம் தளர்ந்து , அடங்கின பிறகுதான் , நம்மளைப் பத்தி யோசிப்போமா..? 


வாழ்க்கையிலே எவ்வளவோ வெட்டித்தனமான வேலைகள் எல்லாம் செஞ்சு இருக்கோம். கொஞ்ச நஞ்ச அநியாயமா பண்ணி இருக்கிறோம்?  ஒரு தடவை, உருப்படியான செயல் ஒன்னு செஞ்சு பார்ப்போமேன்னு தான் இந்த முயற்சி.

சில நல்ல காரியங்களை செய்யும்போது , அதனால் கிடைக்கும் பலன்கள் அபரிமிதமானது. சில ஆலயங்களுக்கு செல்லும்போது , ஒரு சிலர் ஏதாவது மந்திர ஸ்லோகங்கள் அடங்கிய தாள்களை நோட்டீசாக கொடுத்துக் கொண்டு இருப்பார்கள். நம்மிலும் நிறைய பேர், அதை வாங்கி இருப்போம். அவர்கள் ஏதும் பலன் இல்லாமல் , இதைப் போல காசை கரியாக்கும் வேலையை செய்வார்களா? நிச்சயமாக இருக்காது. இந்த மாதிரி செயல்கள் செய்யும்போது அவர்களுக்கு கிடைக்கும் ஆத்ம திருப்தி இருக்கிறதே , அதற்க்கு விலை மதிப்பே இல்லை.

ஒரு சிலருக்கு , இந்த மாதிரி தெய்வீக காரியங்களை செய்யும்படி ,யாராவது பரிந்துரை செய்தும் இருக்கலாம். இது எந்த விதத்தில் உதவும் என்பதை, இந்த கட்டுரை முடிவில் நீங்கள் புரிந்து கொள்வீர்கள். 

காஞ்சிப் பெரியவர் - அஷ்டமா சித்திகளை அடைந்த ஒரு அவதார புருஷர். ஆனால், துளி கூட கர்வமின்றி, அதை எந்த ஒரு சுய நலத்துக்கும் பயன் படுத்தாத மகான். அவரைப் போன்ற புண்ணிய ஆத்மாக்கள் எத்தனையோ மனிதர்களின் வாழ்க்கையை இன்றும் பண்படுத்திக் கொண்டு இருக்கின்றன.

பெரியவரின் பக்தர் ஒருவர் வாழ்வில் நடந்த ஒரு சுவாரஸ்யமான, உண்மை சம்பவத்தை இன்று நாம் பார்க்க விருக்கிறோம். 
காஞ்சி பரமாச்சாரியாரின் அடியார்களில் ஒருவர் ஒருமுறை கல்கத்தாவைச் சேர்ந்த சேட்டு ஒருவரை அவரிடம் கூட்டிவந்தார். அந்த சேட் மிகவும் வசதிபடைத்தவர். பக்தியும் பணிவும் கொண்டவர்.
அவருக்குக் கடுமையான நோயொன்று சிரமம் கொடுத்தது. இரைப்பைக்கு மேலேயுள்ள உணவுக்குழாயின் இயக்கத்தில் பாதிப்பு. அதன் விளைவாக உணவை வயிற்றில் துவாரம் போட்டு 

அதன்மூலம் உணவு செலுத்தப்பட்டு வந்தது. 

இருப்பினும் அதையும் தாங்கிக்கொண்டு வாழ்ந்தார். எந்த விதமான வைத்தியமோ, கோயில்களில் செய்யப்படும் பிரார்த்தனையோ, மாந்திரீகமோ எதுவுமே அவருக்குப் பலிக்கவில்லை.

அவர் பரமாச்சாரியாரைப் பற்றிக் கேள்விப்பட்டார். ஆகவே அவரைப் பார்க்க அழைத்துச்செல்லுமாறு அவருடைய நண்பராகிய அடியாரை வற்புறுத்தினார்.
பரமாச்சாரியாரிடம் சொன்னபோது அவர் முதலில் பார்க்க மறுத்துவிட்டார்.
அதனால் சொல்லாமல் கொள்ளாமல் அந்த அடியார் அந்த சேட்டை அழைத்துக்கொண்டுபோய் பரமாச்சாரியாரின் முன்னிலையில் நின்றார். 

அந்த அடியார் என்ன சொல்லியும் பரமாச்சாரியார் ஒன்றுமே பதில் சொல்லவில்லை.
இரவு வெகுநேரமாகிய பின்னர் அதைப் பற்றி பேசினார்.
 
ஆனால், இதற்கெல்லாம் ஒன்றும் செய்யமுடியாது; பக்தியுடன் இருந்து நல்ல காரியங்களை நிறையச்செய்யுமாறும் சொல்லிவிட்டார்.

அடியார் விடவில்லை. எப்படியும் இதற்கெல்லாம் விமோசனம்,  பரிகாரம் இருந்துதான் ஆகவேண்டும் என்று பணிவுடன் வாதிட்டு பரமாச்சாரியரை மிகவும் உரிமையுடனும் நம்பிக்கையுடனும் வற்புறுத்தினார்.
 
 
சிறுது நேரம் மௌனமாக இருந்த பரமாச்சாரியார், அந்த சேட்டிடம் தாம் சொல்வதை அப்படியே செய்யுமாறு வாக்குறுதி கேட்டார். சேட் ஒத்துக்கொண்டார்.
இந்து சமயத்திலுள்ள பதினெட்டுப் புராணங்களையும் பதினெட்டுத் தனித்தனிப் புத்தகங்களாக சமஸ்கிருதத்தில் அச்சிட்டு, தகுதியுடையவர்களாகிய வேத நூல் படிப்பவர்களுக்கு இலவசமாகக் கொடுக்கவேண்டும் என்று பரமாச்சாரியார் ஆணையிட்டார். 

 பரமாச்சாரியாரின் பாதங்களில் விழுந்து வணங்கி, சேட் அந்த நற்காரியத்தைத் தாம் செய்வதாக ஒத்துக்கொண்டார். பரமாச்சாரியர் அந்த சேட்டை ஆசிர்வதித்துப் பிரசாதம் வழங்கச்செய்தார்.
கல்கத்தாவுக்குச் சென்ற சேட், தம்முடைய ஐந்து மாடிக்கட்டடத்தின் மேல்மாடி முழுவதையும் புராண வெளியீட்டிற்காக ஒதுக்கினார். பல சாஸ்திர விற்பன்னர்களை கூட்டுவித்தார். அவர்களின்மூலம் தரமான காகிதத்தில் சுத்தமாக அச்சிட்டுப் பெரிய பெரிய புத்தகங்களாக வெளியிட்டுக் கொடுத்தார். 

 'பக்தியே விலை' என்றும் குறிப்பிடச் செய்தார், சேட்.    
பதினேழு புராணங்கள் அச்சிடப்பட்டுவிட்டன.
ஆனால் சேட் வழக்கம்போல் குழாய்மூலமே உணவு செலுத்தப்பட்டு வந்தார். 

ஆனாலும்கூட சேட் அதைப் பற்றி கவலையும்படவில்லை. அவர்பாட்டுக்கு புராண வெளியீட்டை நம்பிக்கையுடன் ஒரு கர்மயோகமாகச் செய்தார். 

கடைசியாக ஸ்கந்த புராண வெளியீட்டு வேலை தொடங்கியது.
 
 
அவ்வளவுதான்.
திடீரென்று ஒருநாள் சேட் சாப்பாட்டை வாயால் மென்று விழுங்கி சாப்பிடத் துவங்கினார். 

நன்றாக ரசித்து ருசித்துச் சாப்பிட்டார்.
 
அதுவரை தீராமல் இருந்த நோய் பரமாச்சாரியார் பேரருளால் நீங்கியது. 

பரமாச்சாரியாரைப் போய்ப் பார்த்து விபரத்தைச் சொன்னார்கள். 

பரமாச்சாரியரின் ஆற்றலை வியந்து அவர் தந்த வரத்தால் சேட்டின் நோய் நீங்கிப் பிழைத்துக் கொண்டதாக அந்த அடியார் சொல்லி, 'பரமாச்சாரியார்தான் கடவுள் என்றும் சொன்னார். 

ஆனால் பரமாச்சாரியாரோ ரொம்பவும் 'கூலாக'ச் சொல்லியிருக்கிறார்.
 
"நம்ம நாட்டோட தர்ம சாஸ்திரங்களோட சக்தியல்லவா அவரக் காப்பாத்தியிருக்கு?"


அதுதான் பெரியவர்.  


சரி, இதைப் போல நாமும் ஏதாவது செய்யலாமே. தனி ஒரு மனிதனாக செய்வதை விட, ஒரு குழுவாக இயங்கி செய்ய முயற்சிக்கலாமே! 



நமது சகோதரர் , ஆன்மீக கடல் வீரமுனி ஐயா அவர்கள், ஓம் சிவ சிவ ஓம் மந்திரத்தை, ஆன்மீக அன்பர்களுக்கு எடுத்துச் செல்லும் பணியில் ஈடுபட்டுள்ளார். என்னால் முடிந்த அளவு நானும் உதவுவதாக உறுதி அளித்துள்ளேன். நீங்களும் உதவ நினைத்தால், தாரளமாக கை கோர்க்கலாம். 



என்னுடைய வேண்டுகோள், இதைப் பரப்பும் முன்பு, நாம் ஒவ்வொருவரும் இதை ஜெபிக்கத் தொடங்கி, இதன் சக்தியை மனப் பூர்வமாக உணர்ந்து , பின் மற்றவர்களுக்கும் எடுத்து செல்ல உதவலாம்.   

தமிழ்நாட்டில் இருக்கும் 32 மாவட்டங்களில் மாவட்டத்துக்கு ஒரு சிவ அம்சமுடைய துறவி கிடைப்பது அரிதாக இருக்கிறது.இந்த துர்பாக்கிய சூழ்நிலையை 1980களில் உணர்ந்த மிஸ்டிக் செல்வம் ஐயா அவர்கள் ஒரு ஆராய்ச்சி செய்தார்;குடும்பஸ்தராக  இருக்கவேண்டும்;மந்திர சக்தியும் கைகூடவேண்டும்;துறவு நிலையை எட்டாமலேயே சிவனருள் கிட்ட வேண்டும்.தினசரி வாழ்க்கை வேகமாக இருக்கிறது.அதற்கேற்றாற்போல் எளிமையான,ஆனால் சர்வ சக்திவாய்ந்த சிவ மந்திரம் ஏதும் உண்டா? என பல சிவனடியார்களைத் தேடி வேண்டினார்.அவரது பல வருடத் தேடலின் முடிவாக நமக்குக் கிடைத்த சிவ வைரம் “ஓம்சிவசிவஓம்”

இரண்டே இரண்டு கட்டுப்பாடுகளே இந்த மந்திரத்தை ஜபிக்க உண்டு.வேறு எதுவும் தேவையில்லை;

1.21 வயது நிரம்பியிருக்க வேண்டும்.

2.அசைவம் சாப்பிடக்கூடாது.

பிரயாணம்  செய்யும்போது, வாகனம் ஓட்டும்போது, நடந்துகொண்டு ஜெபிக்கவேண்டம். கிரிவலம் சுற்றும்போது, ஆலய வலம் வரும்போது, பாத யாத்திரை, சபரிமலை யாத்திரை செய்யும்போது செய்யலாம்.

எந்த ஒரு மந்திரமும் 1,00,000 தடவைக்கு மேல் உரு (ஜபம்) ஏற்றியபின்னரே வேலை செய்யும்.ஓம்சிவசிவஓம் 10,000 தடவை சொல்வதற்குள் நம்முடைய கடுமையான நெருக்கடியிலிருந்து நம்மை மீட்கத் துவங்கும்;கவனிக்கவும் துவங்கும்.இந்த ஓம்சிவசிவஓம் மந்திரத்தையும் 1,00,000 தடவைக்கு ஜபிக்க வேண்டும்.

எப்படி ஜெபிக்கவேண்டும்?

மஞ்சள்விரிப்பில் கிழக்கு அல்லது வடக்கு நோக்கி அமர்ந்து கொள்ள வேண்டும்;இரண்டு உள்ளங்கைகளிலும் தலா ஒரு ஐந்துமுக ருத்ராட்சம் வைத்து,கைகளை மடக்கிக் கொள்ள வேண்டும்.நெற்றியில் விபூதி(திருநீறு) பூசிக்கொண்டோமா? என்பதை பார்த்துக்கொள்ளவும்.செல்போன்,டிவி,காலிங் பெல் இவற்றை மவுனமாக்கிக் கொள்ள வேண்டும்.(அல்லது அதிகாலை 4.30 முதல் 6.00 மணி வரையிலும் மற்றும் இரவு தூங்குவதற்கு முந்திய ஒரு மணிநேரம் வரையிலும் எந்த தொந்தரவும் இராது)

முதலில் ஓம் (உங்களின் குலதெய்வத்தின் பெயர்) நமக

அடுத்து ஓம் கணபதியே நமக

அடுத்து ஓம் (உங்களின் இஷ்ட தெய்வத்தின் பெயர்) நமக என வரிசையாக மனதுக்குள்,உதடு அசையாமல் ஜபிக்க வேண்டும்.

இப்போது உங்களின் நியாயமான ஆசை என்ன வென்பதை நினைத்துக் கொள்ள வேண்டும்.

(சில உதாரணங்களைப் பார்ப்போம்:இந்த வருடம் எனக்கு பதவி உயர்வு கிடைக்க வேண்டும்

நான் விரும்பும் படிப்பில் கவுன்சிலிங்கில் சேர வேண்டும்

எனது இப்போதைய மாத வருமானம் ரூ.15,000/-இது ரூ.45,000/-ஆக உயர வேண்டும்.

எனது நோய் விரைவில் தீர வேண்டும்

எனது பிரிந்த தம்பி என்னிடம் வந்து பேச வேண்டும்

எனது 2 லட்சம் ரூபாய் கடன் தீர வேண்டும்

எனக்கு வர வேண்டிய பணம் விரைவில் கிடைக்க வேண்டும்

என உங்களுக்கு விருப்பமான,நியாயமான,யாருக்கும் தீங்கு தராத ஒரு கோரிக்கையை நினைத்துக்கொள்ளவும்.ஒரு முறை நினைத்தால் போதுமானது)

பிறகு,ஓம்சிவசிவஓம் ; ஓம்சிவசிவஓம்; ஓம்சிவசிவஓம் என தொடர்ந்து ஒரு மணி நேரத்துக்குக் குறையாமல் ஜபித்து வர வேண்டும்.

சிலருக்கு 10 நாளுக்குள் பலன் கிடைக்கத் துவங்கும்;சிலருக்கு 45 நாளாகலாம்;சிலருக்கு ஆறுமாதங்கள் ஆகலாம்;சிலருக்கு ஓரிரு வாரங்களிலேயே பலன் கிடைக்கத் துவங்கும்.



தமிழ்நாடு மாநிலத்தில் ஏழு கோடி தமிழர்கள் வாழ்ந்துவருகிறார்கள்.தமிழ்நாடு தவிர,பிற மாநிலங்களிலும்,அயல்நாடுகளிலும் சுமார் 3 கோடித்தமிழர்கள் வாழ்ந்துவர,ஆக தமிழர்களின் எண்ணிக்கை 10,00,00,000(பத்து கோடி)பேர்களாகும்.இவர்கள் அனைவருக்கும் ஓம்சிவசிவஓம் மந்திர ஜபம்  புனிதமான சிவத்தொண்டினைச் செயல்படுத்திட விரும்பும் ஆன்மீகக்கடல் வாசகர்கள் மூன்று விதங்களில் செயல்படமுடியும்.
 
கீழே உள்ள படத்தை க்ளிக் செய்து , மவுசில் ரைட் க்ளிக் செய்து View  Image செலக்ட் செய்யுங்கள். அதன் பிறகு அந்த படத்தை திரும்ப க்ளிக் செய்தால், படம் பெரியதாக தெரியும். 


1.உங்கள் ஊரில் இருக்கும் பழமையான சிவாலயங்களில் பிரதோஷ நாட்களில் மாலை 4.00 மணி முதல் 7.00 மணி வரை ஓம்சிவசிவஓம் ஜபிக்கும் முறையை நோட்டீஸாக அச்சடித்து விநியோகிக்கலாம்.

2.ஓம்சிவசிவஓம் நோட்டீஸ் அச்சடிக்க அன்பளிப்பு அனுப்பலாம்.1000, 2000, 5000, 10,000 50,000 எண்ணிக்கையில் அச்சடிக்க அன்பளிப்பு தரலாம்.(அல்லது) உங்கள் ஊரிலேயே உங்கள் நேரடி மேற்பார்வையில் அச்சடித்து,ஆன்மீகக்கடல் முகவரிக்கு அனுப்பலாம்.

3.வெளிமாநிலம்,வெளி நாடுகளில் இருப்பவர்கள் பதிவிறக்கம் செய்து,உங்கள் பகுதியில் அச்சடித்து விநியோகிக்கலாம்.

அச்சடிக்க இயலாதவர்கள், விநியோகம் செய்ய மட்டும் விருப்பம் உள்ளவர்கள் தங்களின் அஞ்சல் முகவரியை aanmigakkadal @gmail .com  அனுப்பவும்.தங்களுக்கு ஓம்சிவசிவஓம் நோட்டீஸ் அனுப்பி வைப்போம். பழமையான சிவாலயங்களில் பிரதோஷ நாட்களில் , வரும் பக்தர்களுக்கு விநியோகிக்கலாம். 


இதைத் தவிர, நாங்களே நேரடியாக - சதுரகிரியிலும், அண்ணாமலையிலும், மதுரை மீனாட்சி அம்மன் ஆலயத்திலும் - சில குறிப்பிட்ட தினங்களில் , நோட்டீஸ் அச்சடித்து கொடுக்க முடிவு செய்துள்ளோம். விருப்பம் இருப்பவர்கள் உங்களால் இயன்ற உதவிகளை செய்யலாம்.

நோட்டீஸ் தான் அடிச்சு வெளியிடனும்னு இல்லை. உங்களுக்கு தெரிஞ்சவங்களுக்கு , தெளிவா எடுத்துச் சொல்லலாம். இந்த பதிவை, இணையத்தின் மூலை முடுக்குகளுக்கும் - தமிழ் கூறும் வாசகர்களின் பார்வைக்கு    எடுத்துச் செல்ல உதவினாலே , அது நீங்கள் செய்யும் மகத்தான உதவி.

ஓம் சிவ சிவ ஓம் !

இது, நாம் செய்யும் காரியம் அல்ல. நம்முள் புகுந்து இயக்கிக் கொண்டு இருக்கும் அந்த சிவத்தின் வேலை தான் ! 

இவ்வளவு தூரம் , திரும்ப திரும்ப சொல்றேனேங்கிறதுக்காகவாவது , நம் வாசகர்கள் - ஓம் சிவ சிவ ஓம் - ஜெபிக்க ஆரம்பிப்பீங்கனு நம்புறேன்..!

நமக்கு ஒன்னும் நல்லது நடக்க மாட்டீங்குதேனு புலம்புறதை விட, நம்ம கஷ்டங்கள் தீர , கடவுள் நமக்கு ஒரு சந்தர்ப்பம் , வலிமையான ஆயுதம் அல்லது கவசமா,  இந்த மந்திரம் என்னும் வரத்தை கொடுத்து இருப்பதாக, நம்புங்க..! நடக்கும் சம்பவங்கள் - மிக நன்மையாக முடிய, இறை அருள் புரியட்டும்..! 

வாழ்க அறமுடன் ! வளர்க அருளுடன்
!


Read more: http://www.livingextra.com/2011/10/blog-post_22.html#ixzz1cneY2cEr

'Queen's English' not the best



 Other Sciences / Social Sciences 
Native English speakers should give up their claim to be the guardians of the purest form of the language and accept that the ways it is used and changed by millions around the world are equally valid.
A linguist at the University of Portsmouth, Dr. Mario Saraceni, has published an article in the latest issue of the journal Changing English which suggests the way English is taught to non-native speakers and the attitudes of those for whom it is their mother tongue need a dramatic change.
He said: “It’s important the psychological umbilical cord linking English to its arbitrary centre in England is cut. The English are not the only legitimate owners of the language.
“English is the most dominant language on the planet and though it is spoken widely in the western world, westerners are in the minority of English language speakers.
“For many around the world, the ability to speak English has become as important as knowing how to use a computer. But the myth of the idealized native speaker needs to be abandoned. How it is spoken by others should not be seen as second best.”
Dr. Saraceni, of the School of Languages and Area Studies, said it was time English language teachers abroad took down posters of double-decker buses and Parliament Square from their classrooms and taught English in a purely local context.
He said: “Critics might feel uncomfortable with what they see as a laissez-faire attitude but language use is not about getting closer to the ‘home’ of English, and it is not about bowing deferentially and self-consciously to the so-called superiority of the inner circle of the UK, US, Australia and New Zealand.
“Language use is fundamentally about mutual understanding.”
According to Dr Saraceni, the widely held view that English has spread around the world from its original birthplace in England can be challenged.
“The idea seems natural and unquestionable, but if you examine it closer it is patently untrue. It is impossible to identify any point in history or geography where the English language started – one can talk only of phases of development. The origins of English are not to be found in the idea of it spreading from the centre to the periphery, but in multiple, simultaneous origins. The concept of a single version of any language is always questionable.”
English has been “reincarnated” throughout the world, including in Malaysia, India, China and Nigeria but England should not be seen as the linguistic “garden of Eden” where the language was pure and perfect, he said, though this notion has “not yet been accepted by linguistic vigilantes or the power elite” despite being favoured by many linguists globally.
The de-Anglicisation of English needs to take place primarily in classrooms and the “whole mystique of the native speaker and mother tongue should be quietly dropped from the linguist’s set of myths about the language”.
Dr. Saraceni said: “Fundamentally, we need to re-think the whole concept of languages in connection to nations and we need to begin to accept that people use the linguistic repertoires that suit them the most. The notion of separate of language ‘A’, language ‘B’, etc. needs to be reconsidered in favor of a more flexible approach.” Dr. Saraceni’s thought piece is published in the latest issue of Changing English.
Provided by University of Portsmouth
"'Queen's English' not the best." November 2nd, 2011. http://www.physorg.com/news/2011-11-queen-english.html
Posted by
Robert Karl Stonjek

World's first manned flight with an electric multicopter (HD 720p)


At the end of October 2011, Thomas Senkel of e-volo made the first manned flight with an e-powered multicopter at an airstrip in the southwest of Germany. The flight lasted one minute and 30 seconds, after which the constructor and test pilot stated: "The flight characteristics are good natured. Without any steering input it would just hover there on the spot". This could be the future of flight, piloting a device as simple as a car. 
More information: www.e-volo.com

Brain Cells Responsible for Keeping Us Awake Identified


Researchers have identified the group of neurons that mediates whether light arouses us and keeps us awake, or not. (Credit: iStockphoto/Osman Safi)
Science Daily  — Bright light arouses us. Bright light makes it easier to stay awake. Very bright light not only arouses us but is known to have antidepressant effects. Conversely, dark rooms can make us sleepy. It's the reason some people use masks to make sure light doesn't wake them while they sleep.

These cells release a neurotransmitter called hypocretin, Siegel said. The researchers compared mice with and without hypocretin and found that those who didn't have it were unable to stay awake in the light, while those who had it showed intense activation of these cells in the light but not while they were awake in the dark.Now researchers at UCLA have identified the group of neurons that mediates whether light arouses us -- or not. Jerome Siegel, a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA, and colleagues report in the current online edition of theJournal of Neuroscience that the cells necessary for a light-induced arousal response are located in the hypothalamus, an area at the base of the brain responsible for, among other things, control of the autonomic nervous system, body temperature, hunger, thirst, fatigue -- and sleep.
This same UCLA research group earlier determined that the loss of hypocretin was responsible for narcolepsy and the sleepiness associated with Parkinson's disease. But the neurotransmitter's role in normal behavior was, until now, unclear.
"This current finding explains prior work in humans that found that narcoleptics lack the arousing response to light, unlike other equally sleepy individuals, and that both narcoleptics and Parkinson's patients have an increased tendency to be depressed compared to others with chronic illnesses," said Siegel, who is also a member of the UCLA Brain Research Institute and chief of neurobiology research at the Sepulveda Veterans Affairs Medical Center in Mission Hills, Calif.
Prior studies of the behavioral role of hypocretin in rodents had examined the neurotransmitter's function during only light phases (normal sleep time for mice) or dark phases (their normal wake time), but not both. And the studies only examined the rodents when they were performing a single task.
In the current study, researchers examined the behavioral capabilities of mice that had their hypocretin genetically "knocked-out" (KO mice) and compared them with the activities of normal, wild-type mice (WT) that still had their hypocretin neurons. The researchers tested the two groups while they performed a variety of tasks during both light and dark phases.
Surprisingly, they found that the KO mice were only deficient at working for positive rewards during the light phase. During the dark phase, however, these mice learned at the same rate as their WT littermates and were completely unimpaired in working for the same rewards.
Consistent with the data in the KO mice, the activity of hypocretin neurons in their WT littermates was maximized when working for positive rewards during the light phase, but the cells were not activated when performing the same tasks in the dark phase.
"The findings suggest that administering hypocretin and boosting the function of hypocretin cells will increase the light-induced arousal response," Siegel said. "Conversely, blocking their function by administering hypocretin receptor blockers will reduce this response and thereby induce sleep."
Further, Siegel noted, "The administration of hypocretin may also have antidepressant properties, and blocking it may increase tendencies toward depression. So we feel this work has implications for treating sleep disorders as well as depression."
Other authors on the study included Ronald McGregor (first author), Ming-Fung Wu, Grace Barber and Lalini Ramanathan, all of UCLA, the Veterans Affairs Greater Los Angeles Healthcare System and the UCLA Brain Research Institute.
The research was supported by the National Institutes of Health and the Medical Research Service of the Department of Veterans Affairs. The authors report no conflict of interest.

Astrobiologists Discover 'Sweet Spots' for the Formation of Complex Organic Molecules in the Galaxy


Spectrum showing water and organics in the Orion nebula. The data were taken by the heterodyne instrument for the far infrared, or HIFI, onboard the Herschel Space Observatory. (Credit: Courtesy of ESA/NASA/JPL-Caltech)
Science Daily — Scientists within the New York Center for Astrobiology at Rensselaer Polytechnic Institute have compiled years of research to help locate areas in outer space that have extreme potential for complex organic molecule formation. The scientists searched for methanol, a key ingredient in the synthesis of organic molecules that could lead to life. Their results have implications for determining the origins of molecules that spark life in the cosmos.

The findings will be published in the Nov. 20 edition of The Astrophysical Journal in a paper titled "Observational constraints on methanol production in interstellar and preplanetary ices." The work is collaboration between researchers at Rensselaer, NASA Ames Research Center, the SETI Institute, and Ohio State University.
"Methanol formation is the major chemical pathway to complex organic molecules in interstellar space," said the lead researcher of the study and director of the NASA-funded center, Douglas Whittet of Rensselaer. If scientists can identify regions where conditions are right for rich methanol production, they will be better able to understand where and how the complex organic molecules needed to create life are formed. In other words, follow the methanol and you may be able to follow the chemistry that leads to life.
Using powerful telescopes on Earth, scientists have observed large concentrations of simple molecules such as carbon monoxide in the clouds that give birth to new stars. In order to make more complex organic molecules, hydrogen needs to enter the chemical process. The best way for this chemistry to occur is on the surfaces of tiny dust grains in space, according to Whittet. In the right conditions, carbon monoxide on the surface of interstellar dust can react at low temperatures with hydrogen to create methanol (CH3OH). Methanol then serves as an important steppingstone to formation of the much more complex organic molecules that are required to create life. Scientists have known that methanol is out there, but to date there has been limited detail on where it is most readily produced.
What Whittet and his collaborators have discovered is that methanol is most abundant around a very small number of newly formed stars. Not all young stars reach such potential for organic chemistry. In fact, the range in methanol concentration varies from negligible amounts in some regions of the interstellar medium to approximately 30 percent of the ices around a handful of newly formed stars. They also discovered methanol for the first time in low concentrations (1 to 2 percent) in the cold clouds that will eventually give birth to new stars.
The scientists conclude in the paper that there is a "sweet spot" in the physical conditions surrounding some stars that accounts for the large discrepancy in methanol formation in the galaxy. The complexity of the chemistry depends on how fast certain molecules reach the dust grains surrounding new stars, according the Whittet. The rate of molecule accumulation on the particles can result in an organic boom or a literal dead end.
"If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don't get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight," Whittet said. "If the buildup is too slow, the opportunities for reaction are also much lower."
This means that under the right conditions, the dust surrounding certain stars could hold greater potential for life than most of its siblings. The presence of high concentrations of methanol could essentially jumpstart the process to create life on the planets formed around certain stars.
The scientists also compared their results with methanol concentrations in comets to determine a baseline of methanol production in our own solar system.
"Comets are time capsules," Whittet said. "Comets can preserve the early history of our solar system because they contain material that hasn't changed since the solar system was formed." As such, the scientists could look at the concentrations of methanol in comets to determine the amount of methanol that was in our solar system at its birth.
What they found was that methanol concentrations at the birth of our solar system were actually closer to the average of what they saw elsewhere in interstellar space. Methanol concentrations in our solar system were fairly low, at only a few percent, compared to some of the other methanol-dense areas in the galaxy observed by Whittet and his colleagues.
"This means that our solar system wasn't particularly lucky and didn't have the large amounts of methanol that we see around some other stars in the galaxy," Whittet said.
"But, it was obviously enough for us to be here."
The results suggest that there could be solar systems out there that were even luckier in the biological game than we were, according to Whittet. As we look deeper into the cosmos, we may eventually be able to determine what a solar system bursting with methanol can do.

NASA's Fermi Finds Youngest Millisecond Pulsar, 100 Pulsars To-Date



This plot shows the positions of nine new pulsars (magenta) discovered by Fermi and of an unusual millisecond pulsar (green) that Fermi data reveal to be the youngest such object known. With this new batch of discoveries, Fermi has detected more than 100 pulsars in gamma rays. (Credit: NASA/DOE/Fermi LAT Collaboration)
Science Daily — An international team of scientists using NASA's Fermi Gamma-ray Space Telescope has discovered a surprisingly powerful millisecond pulsar that challenges existing theories about how these objects form.

At the same time, another team has located nine new gamma-ray pulsars in Fermi data, using improved analytical techniques.
A pulsar is a type of neutron star that emits electromagnetic energy at periodic intervals. A neutron star is the closest thing to a black hole that astronomers can observe directly, crushing half a million times more mass than Earth into a sphere no larger than a city. This matter is so compressed that even a teaspoonful weighs as much as Mount Everest.
"With this new batch of pulsars, Fermi now has detected more than 100, which is an exciting milestone when you consider that, before Fermi's launch in 2008, only seven of them were known to emit gamma rays," said Pablo Saz Parkinson, an astrophysicist at the Santa Cruz Institute for Particle Physics at the University of California Santa Cruz, and a co-author on two papers detailing the findings.
One group of pulsars combines incredible density with extreme rotation. The fastest of these so-called millisecond pulsars whirls at 43,000 revolutions per minute.
Millisecond pulsars are thought to achieve such speeds because they are gravitationally bound in binary systems with normal stars. During part of their stellar lives, gas flows from the normal star to the pulsar. Over time, the impact of this falling gas gradually spins up the pulsar's rotation.
The strong magnetic fields and rapid rotation of pulsars cause them to emit powerful beams of energy, from radio waves to gamma rays. Because the star is transferring rotational energy to the pulsar, the pulsar's spin eventually slows as the star loses matter.
Typically, millisecond pulsars are around a billion years old. However, in the Nov. 3 issue of Science, the Fermi team reveals a bright, energetic millisecond pulsar only 25 million years old.
The object, named PSR J1823−3021A, lies within NGC 6624, a spherical collection of ancient stars called a globular cluster, one of about 160 similar objects that orbit our galaxy. The cluster is about 10 billion years old and lies about 27,000 light-years away toward the constellation Sagittarius.
Fermi's Large Area Telescope (LAT) showed that eleven globular clusters emit gamma rays, the cumulative emission of dozens of millisecond pulsars too faint for even Fermi to detect individually. But that's not the case for NGC 6624.
"It's amazing that all of the gamma rays we see from this cluster are coming from a single object. It must have formed recently based on how rapidly it's emitting energy. It's a bit like finding a screaming baby in a quiet retirement home," said Paulo Freire, the study's lead author, at the Max Planck Institute for Radio Astronomy in Bonn, Germany.
J1823−3021A was previously identified as a pulsar by its radio emission, yet of the nine new pulsars, none are millisecond pulsars, and only one was later found to emit radio waves.
Despite its sensitivity, Fermi's LAT may detect only one gamma ray for every 100,000 rotations of some of these faint pulsars. Yet new analysis techniques applied to the precise position and arrival time of photons collected by the LAT since 2008 were able to identify them.
"We adapted methods originally devised for studying gravitational waves to the problem of finding gamma-ray pulsars, and we were quickly rewarded," said Bruce Allen, director of the Max Planck Institute for Gravitational Physics in Hannover, Germany. Allen co-authored a paper on the discoveries that was published online in The Astrophysical Journal.
Allen also directs the Einstein@Home project, a distributed computing effort that uses downtime on computers of volunteers to process astronomical data. In July, the project extended the search for gamma-ray pulsars to the general public by including Femi LAT data in the work processed by Einstein@Home users.
NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. It is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Fruit Fly Intestine May Hold Secret to Fountain of Youth: Long-Lived Fruit Flies Offer Clues to Slowing Human Aging and Fighting Disease


In young fruit flies (left), the intestinal tissues are highly organized, as shown by the even distribution of different cell types, each represented by a different color. As flies age, this order breaks down, caused by unregulated stem cell activity and inability to form cells with specialized functions. The Salk scientists and their collaborators discovered that activating the fruit fly version of the PCG-1 gene delayed this aging process, while simultaneously extending lifespan. (Credit: Courtesy of Salk Institute for Biological Studies)
Science Daily  — One of the few reliable ways to extend an organism's lifespan, be it a fruit fly or a mouse, is to restrict calorie intake. Now, a new study in fruit flies is helping to explain why such minimal diets are linked to longevity and offering clues to the effects of aging on stem cell behavior.

"Fruit flies and humans have a lot more in common than most people think," says Leanne Jones, an associate professor in Salk's Laboratory of Genetics and a lead scientist on the project. "There is a tremendous amount of similarity between a human small intestine and the fruit fly intestine."Scientists at the Salk Institute for Biological Studies and their collaborators found that tweaking a gene known as PGC-1, which is also found in human DNA, in the intestinal stem cells of fruit flies delayed the aging of their intestine and extended their lifespan by as much as 50 percent.
The findings of the study, which was a collaboration between researchers at the Salk Institute for Biological Studies and the University of California, Los Angeles, were published online in Cell Metabolism.
Scientists have long known that calorie restriction, the practice of limiting daily food intake, can extend the healthy lifespan of a range of animals. In some studies, animals on restricted diets lived more than twice as long on average as those on non-restricted diets.
While little is known about the biological mechanisms underlying this phenomenon, studies have shown that the cells of calorie-restricted animals have greater numbers of energy-generating structures known as mitochondria. In mammals and flies, the PCG-1 gene regulates the number of these cellular power plants, which convert sugars and fats from food into the energy for cellular functions.
This chain of connections between the mitochondria and longevity inspired Jones and her colleague to investigate what happens when the PCG-1 gene is forced into overdrive. To do this, they used genetic engineering techniques to boost the activity of the fruit fly equivalent of the PCG-1 gene. The flies (known as Drosophila melanogaster) have a short lifespan, allowing the scientists to study aging and longevity in ways that aren't as feasible in longer-lived organisms such as mice or human.
The researchers found that boosting the activity of dPGC-1, the fruit fly version of the gene, resulted in greater numbers of mitochondria and more energy-production in flies -- the same phenomenon seen in organisms on calorie restricted diets. When the activity of the gene was accelerated in stem and progenitor cells of the intestine, which serve to replenish intestinal tissues, these cellular changes correspond with better health and longer lifespan. The flies lived between 20 and 50 percent longer, depending on the method and extent to which the activity of the gene was altered.
"Their intestines were beautiful," says Christopher L. Koehler, a doctoral-student at University of California San Diego who conducts research in Jones' laboratory. "The flies with the modified gene activity were much more active and robust than the other flies."
Part of the reason for this might be that boosting the fruit fly version of PCG-1 stimulates the stem cells that replenish the intestinal tissues, keeping the flies' intestines healthier. The findings suggest that the fruit fly version of PCG-1 can act as a biological dial for slowing the aging process and might serve as a target for drugs or other therapies to put the breaks on aging and age-related diseases.
"Slowing the aging of a single, important organ -- in this case the intestine -- could have a dramatic effect on overall health and longevity," Jones says. "In a disease that affects multiple tissues, for instance, you might focus on keeping one organ healthy, and to do that you might be able to utilize PGC-1."
The Salk researchers were supported by the Emerald Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, the American Cancer Society, the California Institute for Regenerative Medicine and the National Institutes of Health.

City Lights Could Reveal E.T. Civilization


If an alien civilization builds brightly-lit cities like those shown in this artist's conception, future generations of telescopes might allow us to detect them. This would offer a new method of searching for extraterrestrial intelligence elsewhere in our Galaxy. (Credit: David A. Aguilar (CfA))
Science Daily  — In the search for extraterrestrial intelligence, astronomers have hunted for radio signals and ultra-short laser pulses. In a new paper, Avi Loeb (Harvard-Smithsonian Center for Astrophysics) and Edwin Turner (Princeton University) suggest a new technique for finding aliens: look for their city lights. "Looking for alien cities would be a long shot, but wouldn't require extra resources. And if we succeed, it would change our perception of our place in the universe," said Loeb.

How easy would it be to spot a city on a distant planet? Clearly, this light will have to be distinguished from the glare from the parent star. Loeb and Turner suggest looking at the change in light from an exoplanet as it moves around its star.As with other SETI methods, they rely on the assumption that aliens would use Earth-like technologies. This is reasonable because any intelligent life that evolved in the light from its nearest star is likely to have artificial illumination that switches on during the hours of darkness.
As the planet orbits, it goes through phases similar to those of the Moon. When it's in a dark phase, more artificial light from the night side would be visible from Earth than reflected light from the day side. So the total flux from a planet with city lighting will vary in a way that is measurably different from a planet that has no artificial lights.
Spotting this tiny signal would require future generations of telescopes. However, the technique could be tested closer to home, using objects at the edge of our solar system.
Loeb and Turner calculate that today's best telescopes ought to be able to see the light generated by a Tokyo-sized metropolis at the distance of the Kuiper Belt -- the region occupied by Pluto, Eris, and thousands of smaller icy bodies. So if there are any cities out there, we ought to be able to see them now. By looking, astronomers can hone the technique and be ready to apply it when the first Earth-sized worlds are found around distant stars in our galaxy.
"It's very unlikely that there are alien cities on the edge of our solar system, but the principle of science is to find a method to check," Turner said. "Before Galileo, it was conventional wisdom that heavier objects fall faster than light objects, but he tested the belief and found they actually fall at the same rate."
As our technology has moved from radio and TV broadcasts to cable and fiber optics, we have become less detectable to aliens. If the same is true of extraterrestrial civilizations, then artificial lights might be the best way to spot them from afar.
Loeb and Turner's work has been submitted to the journalAstrobiology.

Greenhouse gases beat ozone hole



THE UNIVERSITY OF NEW SOUTH WALES   

sharply_done_-_air_pollution
The impact of ozone depletion on Antarctic and Southern Ocean climate will be overhelmed by the influence of greenhouse gases.
Image: sharply_done/iStockphoto
One set of human-created gases is starting to relinquish its hold on Antarctic climate as another group of emissions produced by human activity is starting to take hold, according to a paper inNature Geoscience, co-authored by ARC Laureate Fellow Professor Matthew England, co-director of the UNSW Climate Change Research Centre.

The review paper highlights how the influence on Southern Hemisphere climate of the Antarctic ozone hole is slowly dissipating and will be progressively overtaken by human-induced emissions of carbon dioxide and other greenhouse gases.

Research into the ozone hole has shown that it has had a profound impact on Southern Hemisphere climate. This has directly affected rainfall, wind speeds and temperatures over an area that ranges from Antarctica to the mid-latitude regions of the Southern Hemisphere.

"Our study shows how ozone depletion over the past three to four decades has had a marked impact on Antarctic and Southern Ocean climate,” says Professor England, who is also a Chief Investigator in the ARC Centre of Excellence for Climate System Science.

“However, this will shortly be overwhelmed by the influence of greenhouse gases."

The ozone hole has significantly transformed the Southern Annular Mode (SAM), which sets the latitude of the Southern Hemisphere jet stream and storm track, and has a profound influence on the oceans.

The ozone-induced changes in the SAM have been linked to cooler than average temperatures over East Antarctica and higher than normal summer temperatures over Patagonia and the northern Antarctic Peninsula.

Further north, it has been identified as leading to higher mountain-related rainfall on the eastern side of New Zealand’s Southern Alps and the south east coast of Tasmania. At the same time this has led to less rainfall over western Tasmania and west of New Zealand’s Southern Alps and higher than normal summer temperatures in New Zealand.

As the influence of the ozone hole on the SAM decreases and greenhouse gases increase, dramatic shifts in climate are expected across Antarctica and many regions of the mid-latitude the Southern Hemisphere.   

"Ozone depletion was an unintended consequence of global CFC emissions during the 20th Century, with pervasive impacts on our climate system,” Professor England said.

“This highlights how human activity can strongly alter atmospheric chemistry and how this, in turn, impacts the Earth’s radiation balance; altering natural systems now and into the future.

“Unfortunately, carbon dioxide resides in the atmosphere for many hundreds or perhaps thousands of years, unlike CFCs that decline over just decades.  So, while the ozone hole will repair over the coming decades, the legacy of our emissions of carbon dioxide is still likely to be felt 1,000 years from now”.
Editor's Note: Original news release can be found here.

Starve tumours: delay growth



CENTENARY INSTITUTE   
jamesbenet_-_prostate_cancer_slide
Each year about 3,300 Australian men die of prostate cancer.
Image: jamesbenet/iStockphoto
Prostate cancers are hungry, growing cells. Now we’ve discovered how to cut off their food supply thanks to research published in Cancer Researchand supported by Movember.
Researchers at the Centenary Institute in Sydney have discovered a potential future treatment for prostate cancer—through starving the tumour cells of an essential nutrient they need to grow rapidly.  Their work, with human cells grown in the lab, reveals targets for drugs that could slow the progress of early and late stage prostate cancer. The research has been funded by the Prostate Cancer Foundation of Australia (PCFA) and Movember.

Each year about 3,300 Australian men die of prostate cancer. It’s Australia’s second worst cancer killer for men, matching the impact of breast cancer on women.

Current therapies for prostate cancer include surgical removal of the prostate, radiation, freezing the tumour or cutting off the supply of the hormone testosterone - but there are often side-effects including incontinence and impotence.

Growing cells need an essential nutrient, the amino acid called leucine, which is pumped into the cell by specialised proteins. And this could be prostate cancer’s weak link.  

Dr Jeff Holst and his team at the Centenary Institute found, in a study to be published this month in Cancer Research, that prostate cancer cells have more pumps than normal. This allows the cancer cells to take in more leucine and outgrow normal cells.

“This information allows us to target the pumps – and we’ve tried two routes. We found that we could disrupt the uptake of leucine firstly by reducing the expression amount of the protein pumps, and secondly by introducing a drug that competes with leucine. Both approaches slowed cancer growth, in essence ‘starving’ the cancer cells,” Dr Holst says.

First author Dr Qian Wang says by targeting different sets of pumps, the researchers were able to slow tumour growth in both the early and late stages of prostate cancer. “In some of the experiments, we were able to slow tumour growth by as much as 50 per cent. Our hope is that we could develop a treatment that slows the growth of the cancer so that it would not require surgical removal. If animal trials are successful over the next few years then clinical trials could start in as little as five years,” he says.  

Dr Holst says one of the other spin-offs of the discovery is a better understanding of the links between prostate cancer and eating foods high in leucine. “Diets high in red meat and dairy are correlated with prostate cancer but still no one really understands why.  We have already begun examining whether these pumps can explain the links between diet and prostate cancer.”

“Given one in nine men in Australia may develop prostate cancer in their lifetime, this discovery could touch thousands of lives.”

The publication of the study comes just in time for Movember, a month-long charity drive in which thousands of people around the globe grow moustaches to raise money for men’s health issues including prostate cancer. 

“This fundamental research tells us more about how prostate and other cancers grow, and will open the way for new treatments in the long term,” says Movember chairman Paul Villanti.

“Movember is now one of the largest non-government global funders of prostate cancer research. We strongly support innovative targeted research that leads to significantly improved clinical tests and treatments to reduce the burden of prostate cancer.  It’s great to see the progress that Dr Holst and his team have made with the support of a Movember Young Investigator grant.

PCFA and Movember have been working together since 2004 to reduce the impact of prostate cancer on Australian men and their loved ones.

PCFA CEO Dr Anthony Lowe says research that has the potential to reduce the impact of prostate cancer on those who are diagnosed is a huge priority for the PCFA’s grants program. “We commend the team at the Centenary Institute on the remarkable progress they are making in this regard,” Anthony Lowe says.

“This is part of a body of work that is investigating the very nature of cancer and opening up new avenues for cancer treatment,” says Centenary Institute Executive Director Professor Mathew Vadas.
Editor's Note: Original news release can be found here.

Heart cells grown in laboratories



MONASH UNIVERSITY   

Monash_Uni_-_green_heart_cell
Embryoid body grown from genetically modified human embryonic stem cells expressing the green fluorescent protein in cardiac cells.
Image: Monash University
Heart disease is the leading cause of death in Australia and now, in a major boost for drug development, scientists will be able to mimic its effects in a petri dish after identifying a new, reliable way of producing heart cells in the laboratory.

Published in the prestigious journal, Nature Methods, the Monash University-led research shows how human heart cells can be consistently produced from embryonic stem cells, creating a potentially inexhaustible source for research and drug discovery. 

Dr David Elliott, and Professors Andrew Elefanty and Ed Stanley of Monash Immunology and Stem Cell Laboratories led the Monash group which collaborated with a number of institutions in Australia and overseas.  

Dr Elliott said the researchers were able to isolate the heart cells by turning them green. 

"We linked a green fluorescent marker - originally from a jelly-fish - to a gene found in heart cells, causing them to glow," Dr Elliott said. 

"Using this cell line we have discovered two new cell surface proteins that we can use as 'handles' to allow us to grab only the cardiac cells from cultures containing different cell types. Importantly, we can use these handles to isolate and study cardiac cells grown from the stem cells of heart disease patients, and, in this way model heart disease in a dish.

"This finding is significant because up until now the development of drugs to treat heart disease has been hampered by the lack of a dependable supply of heart cells for experimentation," Dr Elliott said.

Professor Elefanty said that in the future these markers could be used to pull out heart cells from cultures without having to use genetic modification to make the desired cells visible.

"We are now starting to make significant steps in the search for stem cell based therapies for heart disease and our findings will drive further research and discovery in this field," Professor Elefanty said. 

"This breakthrough is the result of more than ten years of work by the world-leading team at Monash and it illustrates the benefits of investing time and resources in stem cell research."

The team, led by Professors Elefanty and Stanley, are using similar strategies to isolate insulin-producing cells for the treatment of diabetes, and blood cells for the treatment of leukaemia.

The study was undertaken by a collaboration of 26 researchers from the Monash School of Biomedical Sciences, Monash Institute of Pharmaceutical Science, Walter and Eliza Hall Institute and Baker IDI Heart and Diabetes Institute, in Melbourne, as well as Leiden University Medical Centre and Netherlands Proteomics Institute, in the Netherlands.

The Australian researchers were funded by the Australian Stem Cell Centre, the National Health and Medical Research Council of Australia, the Heart Foundation and Victorian State Government.

Complementary research involving Dr Elliot, and Professors Stanley and Elefanty was also published today in Nature Biotechnology.
Editor's Note: Original news release can be found here.

SUNA HAI SHIRDI KI DHARTI PE EK FAKIR AYA HAI SAI BHAJAN LIVE IN GOA SAI...