Search This Blog

Saturday, October 22, 2011

Electrical machines:



An Electrical machine is the generic name for a device that converts mechanical energy to electrical energy, converts electrical energy to mechanical energy, or changes alternating current from one voltage level to a different voltage level.
Electrical machines as employed in industry fall into three categories according to how they convert energy. Generators convert mechanical energy to electrical energy. Motors convert electrical energy to mechanical energy. Transformers change the voltage of alternating current.

Generator
An electric generator is a device that converts mechanical energy to electrical energy. A generator forces electrons to flow through an external electrical circuit. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. The source of mechanical energy, the prime mover, may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air or any other source of mechanical energy.
There are two main parts of a generator which can be described in either mechanical or electrical terms. In mechanical terms the rotor is the rotating part of an electrical machine, and the stator is the stationary part of an electrical machine. In electrical terms the armature is the power-producing component of an electrical machine and the field is the magnetic field component of an electrical machine. The armature can be on either the rotor or the stator. The magnetic field can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator. Generators are classified into two types, AC generators and DC generators.
AC generator
An AC generator converts mechanical energy into alternating current electricity. Because power transferred into the field circuit is much less than power transferred into the armature circuit, AC generators nearly always have the field winding on the rotor and the armature winding on the stator.
AC generators are classified into several types. The first is asynchronous or induction generators, in which stator flux induces currents in the rotor. The prime mover then drives the rotor above the synchronous speed, causing the opposing rotor flux to cut the stator coils producing active current in the stator coils, thus sending power back to the electrical grid. The second type is synchronous generators or alternator, in which the current for the magnetic field is provided by a separate DC current source.
DC generator
A DC generator produces direct current electrical power from mechanical energy. A DC generator can operate at any speed within mechanical limits and always output a direct current waveform. Direct current generators known as dynamos work on exactly the same principles as alternators, but have a commutator on the rotating shaft which converts the alternating current produced by the armature to direct current.

Motor
An electric motor converts electrical energy into mechanical energy. The reverse process of electrical generators, most electric motors operate through interacting magnetic fields and current-carrying conductors to generate rotational force. Motors and generators have many similarities and many types of electric motors can be run as generators, and vice versa.
Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current or by alternating current which leads to the two main classifications: AC motors and DC motors.
AC motor
An AC motor converts alternating current into mechanical energy. It commonly consists of two basic parts, an outside stationary stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft that is given a torque by the rotating field.
There are two main types of AC motors, depending on the type of rotor used. The first type is the induction motor, which only runs slightly slower or faster than the supply frequency. The magnetic field on the rotor of this motor is created by an induced current. The second type is the synchronous motor, which does not rely on induction and as a result, can rotate exactly at the supply frequency or a sub-multiple of the supply frequency. The magnetic field on the rotor is either generated by current delivered through slip rings or by a permanent magnet.
DC motor
The brushed DC electric motor generates torque directly from DC power supplied to the motor by using internal commutation, stationary permanent magnets, and rotating electrical magnets. Brushes and springs carry the electric current from the commutator to the spinning wire windings of the rotor inside the motor. Brushless DC motors use a rotating permanent magnet in the rotor, and stationary electrical magnets on the motor housing. A motor controller converts DC to AC. This design is simpler than that of brushed motors because it eliminates the complication of transferring power from outside the motor to the spinning rotor.
An example of a brushless, synchronous DC motor is a stepper motor which can divide a full rotation into a large number of steps. The motor's position can be controlled precisely without any feedback mechanism as long as the motor is carefully sized to the application.

Transformer
A transformer is a static device that converts alternating current from one voltage level to another level (higher or lower), or to the same level, without changing the frequency. A transformer transfers electrical energy from one circuit to another through inductively coupled conductors—the transformer's coils. A varying electric current in the first or primary winding creates a varying magnetic flux in the transformer's core and thus a varying magnetic field through the secondary winding. This varying magnetic field induces a varying electromotive force (EMF) or "voltage" in the secondary winding. This effect is called mutual induction.
 

Induction motor:

An induction motor or asynchronous motor is a type of alternating current motor where power is supplied to the rotor by means of electromagnetic induction.

An electric motor converts electrical power to mechanical power in its rotor (rotating part). There are several ways to supply power to the rotor. In a DC motor, this power is supplied to the armature directly from a DC source while, in an induction motor, this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Unlike the normal transformer which changes the current by using time varying flux, induction motors use rotating magnetic fields to transform the voltage. 

The current in the primary side creates an electromagnetic field which interacts with the electromagnetic field of the secondary side to produce a resultant torque, thereby transforming the electrical energy into mechanical energy. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.

No comments:

Post a Comment