Search This Blog

Sunday, March 5, 2017

மறைப்பும் திறப்புமான தாவரமென

நுனி கூர்ந்து
அடியகன்ற அரசிலையினை
இடுப்பில் அணிவித்த அந்நாளிலிருந்து
உடலோடு சேர்ந்து
சிலதாவரங்களும் வளர்ந்தன

தோழிகளோடு
கள்ளிச்செடியின் பழம்பறிக்கத்
தெருவெங்கும் அலைந்த நாட்களில்
தன்னுள் முளைக்கத் தொடங்கிய
முட்தாவரமொன்றினை உணர்ந்தாள்

செழித்திருக்கும் உன்னிச் செடி வளைத்து
இலைபறித்து.
கனிகொய்து
தாம்பூலமென ஒருவன் நீட்டியபொழுது
அவளுள் ஒரு பூ மலர்ந்தது

தென்னையின்
பச்சையோலை மறைப்பில்
அவளை உள்ளமர்த்தியபொழுது
உளத் துணையாக
தாவரங்களே எப்பொழுதும்
உடனிருப்பதாக நம்பத்தொடங்கினாள்

வேம்பின் கிளையொடித்து
தழையாடை உடுத்திய ஒருநாளில்
அம்மா சொன்னாள்
அப்படியே அம்மனென இருப்பதாக
அப்போது இறைவியானாள்

மாவிலைகளைத் தோரணங்களாக்கி
வீடு, வீதியெங்கும் தொங்கவிட்ட
மங்கல நிகழ்வினை தொடர்ந்து
மறைப்பும் திறப்புமான தாவரமென
தன்னையுணர்ந்தவள்
பறித்து பதியமிட்ட
இன்னுமொரு பச்சை உயிரென
தனக்குள் வளரத் தொடங்கியிருந்தாள்.

நன்றி : நான்காவது கோணம்
கரிகாலன்
ஓவியம்: Jeeva Nanthan

Saturday, March 4, 2017

Signs of a stroke to recognize

A Visual Guide to Understanding Stroke
  • Numbness of the face, arm, or leg.
  • Confusion, trouble speaking or understanding.
  • Vision trouble in one or both eyes.
  • Trouble walking, dizziness, loss of balance or coordination.
  • A severe headache with no known cause.

Friday, March 3, 2017

Cool ways to generate electricity from the ocean!

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients.  There is growing interest around the world in the utilization of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilized without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects.
Researchers first examined how human-modified sea floors could mimic the ability of muddy shoreline seabeds to dampen and absorb ocean wave energy.  Then began considering how a synthetic seabed might harness that wave power to produce electricity, and this research led Lehmann to eventually develop the Wave Carpet.
A flexible membrane that runs the length of each Wave Carpet undulates in response to passing waves, absorbing much of their energy, just as muddy sea floors do.
Fastened to the membrane are a series of vertical double-action pumps. When flexed by wave energy, the membrane drives the pumps to pressurize and push seawater through a shared discharge pipe. The water gushing through that pipe powers a shore-based turbine that can generate electricity, drive a desalination plant, or do both.
The Wave Carpet is also designed to survive tough ocean conditions. It’s built of corrosion-resistant materials, operates submerged and thus sheltered from storm conditions, and sits far enough below the waterline to eliminate most surface collision danger.
An average device will measure about 30 feet long by 30 feet wide and about 3-10 feet high, depending on local conditions, says Alam. Several devices can also be sited together on one shoreline to power one or more turbines.