Search This Blog

Wednesday, September 21, 2016

Coaxial cable and Common applications

Transmission of electrical signals over wire lines requires the use of two conductors to complete the circuit. One we call the "go" wire; the other is the "return" wire.

For the purpose of explaining coaxial cable, let’s examine a telephone installation using conventional wire. The wires are paired on telephone poles; one pair is used for each telephone circuit. On some circuits, only the "go" wire is mounted on the pole and the earth itself is used as the "return". Sometimes the pairs of wires for telephone circuits are bundled together in groups of up to 1,800 pairs (3,600 separate wires) and are then jacketed to form a "multi-pair cable".

In all of these arrangements the wires carrying the very delicate electrical currents conveying the telephone conversation are exposed to external interference. Lightning, although it may not strike the wires directly, will cause static. Wet weather can cause leakage across insulators, giving a "frying" noise in your telephone receiver, and faults on power transmission lines can cause pops and loud hums that interfere with the conversation. The proximity of other wire pairs carrying conversations to your pair, particularly in multi-pair cables, may cause you to faintly hear another conversation in the background. This is called "cross talk".

There are two other problems related to the use of the conventional pair of wires for communication. One is that this type of circuit has a high "attenuation", that is, the signals get weaker as they travel along the wires and on a long-distance line, amplifiers are necessary to boost the conversation every few miles so that the conversation will not get lost below the line noise.

The other problem, and economically the most important , is that of "bandwidth". A telephone conversation can just satisfactorily be carried on if the circuit transmits audible tones in the range from about 300 hertz (Hz) to about 2,500 Hz, a total "band" of 2,200 Hz. It is possible to carry more than one conversa- tion simultaneously on a pair of wires by "frequency multiplexing" the conversations.

One conversation will occupy frequencies of 300 to 2,500 Hz, the next from 3,000 to 5,200, the next from 5,700 to 7,900, and so on. Each conversation requires 2,200 Hz and there is a "guard band" of at least 500 Hz between each conversation to prevent their mixing. Each of these signals is reconverted at the receiving end of the line to the 300 to 2,500 Hz range before they appear at a telephone receiver. We can not keep adding to the number of conversations that a pair of wires can carry simultaneously because of the relatively low upper limit of frequency that this system of conventional wires can transmit. Coaxial cable was developed to alleviate the foregoing problems.

In coaxial cable, the "go" wire is the center conductor, some form of copper wire, solid or stranded, of comparatively small diameter, around which is a very heavy insulation - the dielectric. But the "return" wire is no longer another identical wire. Instead it is in the form of a copper tube completely surrounding the "go" wire and dielectric, and concentric with it; hence, the term "coaxial".Thus, no external interference can affect your conversation (in the case of telephone usage) because it is carried by currents completely shielded from external effects by the tubular "return" conductor. Effects of weather are also excluded.

Coaxial cable has an extremely broad bandwidth; it will transmit signals from zero frequency (direct cur- rent) up to many millions of hertz. Literally, hundreds of conversations (or messages) can be frequency multiplexed and transmitted simultaneously over a single coaxial cable, or a television program occupying about 3,500,000 Hz can be transmitted simultaneously with hundreds of phone conversations.

Coaxial cable, since it has a low attenuation, does not need as many amplifiers as when using conventional wire. Those that are required are relatively inexpensive as they simultaneously boost all the hundreds of signals on the cable.

Besides its importance in the telephone industry, all the major manufacturers of radio, television, radar, navigation aids, fire control, aircraft, shipbuilding, underwater sound, and many other types of transmitting equipment use coaxial cable. The cable TV and closed circuit TV systems use miles of this type cable. Sophisticated cable TV systems, for example, use a large diameter single or double shielded cable as a main transmission line, with tap-offs of smaller sizes for a secondary lead-in; a third size, even smaller, carries the televised signal directly into the receiver.

The uses of coaxial cable extend to any application in which signal loss and attenuation must be kept to a minimum, or in which the elimination of outside interference is important. Another application is its utilization in various systems of instrumentation. Combining many coaxial cables under one jacket to form an integral unit is used in the computerized instrumentation field.

PTFE (polytetrafluoroethylene) insulated high temperature coaxial cable is used by aircraft and missile manufacturers, inhigh temperature applications, and in products where protection is desired against strong alkalies and acids or other highly corrosive fluids.

How are coaxial cables identified? Only cables made strictly to U.S. Government specifications can be marked with the RG legend. The meanings of the abbreviations of this legend are as follows:
R - RADIO FREQUENCY
G - GOVERNMENT
8- Is the number assigned to
      the Government approval
/U - A universal specification

If the letters A, B, or C appear before the /, it means a specification modification or revision. For example - RG 8/U is superseded by RG 8A/U but both types are still being used.

Types not marked RG are primarily intended for use where the application is not met by some government type. There are many other types of cables designed for specific applications. These are identified in vari- ous ways by each individual manufacturer.



DEFINITIONS

1. ATTENUATION - Attenuation is loss of power or signal expressed in decibels; it is commonly written and spoken of as dB/100 ft. at a specific frequency. An example is RG 8A/U which has a loss of 5.5 dB/100 ft. at 400 MHz.

2. FREQUENCY - Frequency is the term designating the number of reverses or cycles in the flow of alternating current (AC) in one second. For example, the frequency of AC commonly used in the U.S. is 60 hertz and is usually shown as 60 Hz. Broadcast stations operate at frequencies of thousands of cycles per second and their frequencies are called kilohertz (kHz). Your AM radio dial represents frequencies in kilohertz (kHz). High frequencies are in millions of cycles per second and are called megahertz (MHz). TV is broadcast in the MHz range.

3. IMPEDANCE - Impedance is a term expressing the ratio of voltage to current in a cable of infinite length. In the case of coaxial cables, impedance is expressed in terms of "ohms impedance".The coaxial cables generally fall into three main classes; 50 ohms, 75 ohms, and 95 ohms.

An example of each class is:
RG 8A/U 50 ohms impedance
RG 11A/U 75 ohms impedance
RG 22B/U 95 ohms impedance

4. CAPACITANCE (CAPACITY) - Capacitance or capacity is the property of a system of conductors and dielectrics which permits the storage of electricity when a potential or voltage difference exists between the two conductors. A capacity value is expressed in farads.When we deal with coaxial cable, the capacity ranges we have are very small and are expressed in picofarads (pF). Capacity is the major factor governing impedance. Examples of cables with typical impedances have capacity as follows:

RG or M17
Cable Impedance (ohms)
Dielectric Type
Capacitance (pF/ft)
RG 8A/U
50
PE
29.5
RG 231A/U
50
Foam PE
25.0
RG 188A/U
50
Solid TFE
29.0
M17/6
75
PE
20.6
RG 306A/U
75
FoamPE
16.5
RG 140
75
Solid TFE
21.0
M17/90
93
Air space PE
13.5
M17/56
95
PE
17.0
M17/95
95
Solid TFE
15.4
RG 24A/U
125
PE
12.0
RG 114A/U
185
Air space PE
6.5

5. VELOCITY OF PROPAGATION - Velocity of propagation, commonly called velocity, is the ratio of the speed of the flow of an electric current in an insulated cable to the speed of light. All insulated cables have this ratio and it is expressed in a percent- age. In the case of coaxial cables with polyethylene dielectric, this ratio is in the range of 65% - 66%.

In selecting coaxial cable, we must carefully consider not only design criteria, but use and application. Selection of materials in relation to overall design considerations is tabulated in Tables 1 through 4, below:

INNER CONDUCTORS
SOFT BARE
COPPER
TINNED SOFT
COPPER
SILVER - PLATED
COPPER
NICKEL - PLATED
COPPER
TINNED - CADIMUM
BRONZE
COPPER
WELD®
Maximum operating temperature °C 200 150 200 250 150 200
Resistivity at 20°C,ohms - circular mil / ft. 10.371 11.133 10.371 12.5 11.92 25.928
Average tensile strength psi (1,000) 37 37 37.5 37.5 45 130
Flexibility excellent excellent excellent excellent good good
Remarks most popular - for extra flexibility use stranded for added resistance to oxidation and easy solderability, best for low frequency application elevated temperature usein aircraft, missile, and electronics, easy solderability extra high temperature use high tensilestrength with flexibility extra high tensile strength



TABLE 1 - Inner Conductors

OUTER CONDUCTORS
SOFT BARE
COPPER
TINNED SOFT
COPPER
SILVER - PLATED
COPPER
ALUMINUM TUBE COPPER TUBE
Maximum operating temperature °C 200 150 200 - -
Flexibility excellent excellent excellent poor poor
Remarks most popular in braid, minimum .004" to .010", add second shield to improve flexibility most popular in braid, minimum .004" to .010", add second shield to improve flexibility, better for low frequency most popular in braid, minimum .004" to .010", add second shield to improve flexibility, for high temperature for high tensile and crushing loads and lower attenuation for high tensile strength and crushing loads



TABLE 2 - Outer Conductors

PRIMARY DIELECTRICS
POLYETHYLENE (PE) FOAMED POLYETHYLENE (PE) Fluorinated Ethylene Propylene (FEP) Poly Tetrafluoroethylene (PTFE) BUTYL RUBBER
Maximum operating temperature °C -65 to 80 -65 to 80 -65 to 200 -65 to 260 -40 to 80
Average tensile strength psi (1,000) 1.9 2.2 3.6 2.7 1.1
Flexibility good good excellent good excellent
Cut-thru resistance good poor good fair excellent
Water Resistance excellent poor excellent excellent good
Resistance to organic solvents poor poor excellent excellent good
Resistance to acids and alkalies excellent excellent excellent excellent good
Remarks for use under 80°C maximum for use under 80°C maximum for high temperature use to 200°C for high temperature use to 260°C for pulse cables and extreme flexibility



TABLE 3 - Primary Dielectrics

JACKETS
POLYETHYLENE Tetrafluoroe-
thylene
(TFE)
Fluorinated Ethylene
Propylene (FEP)
PVC NEOPRENE® GLASS BRAID
Maximum operating
temperature °C
80 260 200 105 90 260
Average tensile strength
psi (1,000)
1.9 3.5 2.7 2.5 3.2 -
Flexibility good good good good excellent excellent
Resistance to organic
solvents
poor excellent excellent poor good excellent
Resistance to acids and
alkalies
excellent excellent excellent fair good excellent
Abrasion resistance good excellent excellent good excellent poor
Flame resistance slow burn nonflammable nonflammable self-extinguishing self-extinguishing nonflammable
Remarks for added resistance
to weathering
to mate with high
temperature dielectric
to mate with high
temperature dielectric
most widely used to mate with Butyl
dielectric
to mate with high
temperature dielectric



TABLE 4 - Jackets

The design formula for characteristic impedance of a single coaxial line is:



where:

Z0 = Characteristic impedance

E = Dielectric constant (air is 1.0), see Table 5.

D = Inside diameter of the "return" (outer) conductor (conductive metal tube or one or more braids),
see Figure 1.

d = Outside diameter of the "go" (inner)
conductor, see Figure 1.

Dielectric Material
Dielectric
Constant
(E)
Power
Factor
(p)
Air
1.00

Polyethylene - cellular foam (PE)
1.40 - 2.10
0.0003
Polyethylene - solid (PE)
2.3
0.0003
Poly Tetrafluoroethylene
(PTFE)
2.1
0.0002
Cellular Poly Tetrafluoroethylene
(PTFE))
1.4
0.0002
Fluorinated Ethylene Propylene
(FEP)
2.1
0.0007
Cellular Fluorinated Ethylene
Propylene (FEP)
1.5
0.0007
Butyl rubber
3.1
-
Silicone rubber
2.08 - 3.50
0.007 - 0.01


MANUFACTURING


The group of RG cables known as semi-solid dielectric cables, such as RG 62/U, RG 71/U, and RG 63/U, have one thing in common. They have a center conductor around which a polyethylene thread is helically wound and then over the thread, a polyethylene dielectric is extruded. In this respect all of the various groups are the same in basic design and construction up to the braid stage. We will discuss the above group since they are the more difficult to manufacture.

The "go" conductor used in the RG 62/U and RG 71/U groups is a copper-clad steel core wire, "Copperweld ®". Copperweld® is made by a carefully controlled process wherein a thick copper covering is inseparably welded to a high strength steel core. In the case of RG 62/U and RG 71/U, the "go" conductor is 22 gauge with a nominal diameter of 0.0253". Since high frequency currents travel mainly in the outer skin of an electrical conductor, the Copperweld® is used in these cables to provide the unique combination of high strength along with electrical conductance.

The originality of such a design exhibits the complexity of choice involved in selecting conductors for coaxial cable. Table 1 lists some major characteristics of various conductors in popular use today. Use and application of the finished cable must not be slighted in the final design criteria. The manufacturing process of RG 62/U or RG 71/U groups requires several operations. In the first operation, the polyethylene thread is spiraled around the conductor.

In the second operation, the dielectric is extruded over the conductor and spiraled thread. In this operation, there is a possibility of breakage of the conductor due to the fact that the spiraled thread is not always even in diameter and it may cause a jam in the extruder tip. This jam will cause a momentary stoppage and the resulting jerk may cause breakage. The extruded insulation is "spark tested" as part of the extrusion operation to make sure there are no voids or holes in the dielectric. (The inner conductor is at ground potential.) Any pinhole in the dielectric will result in a spark failure, which is recorded as to location and reel number so that it may be cut out before passing through remaining operations.

The next operation is braiding. The extruded core is braided with one or two shields as required by the specification. During this operation, and all remaining operations, the cable is under constant tension. Following the braiding operation, the cable receives an extruded jacket. Again, the cable passes through a chain electrode at high potential to detect any jacket deficiencies. (The braid in this case is at ground potential.)

When the dielectric of polyethylene coaxial cable (whether it is solid or semi-solid) is extruded, strains develop in the material. In theory, these strains are reduced by the use of hot water in the cooling trough. As the dielectric is run through the cooling trough, it runs through very hot water to cool water in graduated steps; therefore, most of the strain should have been relieved. The remaining operations all keep this first extrusion under tension, so that any strains which might have been retained from the extrusion operation have little opportunity to be relieved. When the cable is unreeled, this releases strains if any are present and there could be a conductor movement disproportionate to dielectric movement which might show up only in localized areas. To detect this possible trouble area, the "sweep test " may be used.

As is seen from the preceding explanation, there are possible problems arising in the manufacture of coaxial cable. Some physical problems may lead to electronic problems. For these reasons, manufacturers are constantly improving process controls so that the finished cable will meet the highest standards.

The manufacture of coaxial cable is an exacting process and the very sophisticated application to which it is put, demands the highest quality.

Coaxial cable is probably the most versatile type of cable in existence today. Its development was one of the truly great milestones in the science of long- distance communication as well as transmission of highly complex signals within a relatively simple cable.
































Microsoft will 'cure' cancer within 10 years by 'reprogramming' diseased cells

When you work at Microsoft, everything looks like software—even cancer and other threats to human life.
Microsoft's researchers don't talk about "curing" cancer. Instead, they are aiming to "solve" it.
The company says its eventual goal is to make cells into living computers that could someday be programmed—and even reprogrammed—to treat diseases like cancer. In the near term, it is building computer-modeling tools to assist pharma companies in drug discovery and development.
The lab is positioning itself at the intersection of machine learning,
computer-aided design, mathematics, and biology. For decades, these disciplines were relatively disparate, but that's beginning to change with the advent of such fields as bioinformatics. Microsoft's team specializes in biological modeling, a still-nascent branch of systems biology that involves using advanced computation to map the complex interactions at work inside a cell.

"The field of biology and the field of computation might seem like chalk and cheese," says Chris Bishop, head of Microsoft Research’s Cambridge-based lab, using a Britishism to convey their obvious differences. "But the complex processes that happen in cells have some similarity to those that happen in a standard desktop computer."
Dr Jasmin Fisher, senior researcher and an associate professor at Cambridge University, said: “If we are able to control and regulate cancer then it becomes like any chronic disease and then the problem is solved.”
“I think for some of the cancers five years, but definitely within a decade. Then we will probably have a century free of cancer."

Tuesday, September 20, 2016

~தமிழில் பாடுகிறார்கள்ஜேர்மன் பிரஜைகள்~ "நீயே நிரந்தரம்..."

~தமிழில் பாடுகிறார்கள்ஜேர்மன் பிரஜைகள்~
சொர்ணலதா அவர்கள் பாடிய இனிய பாடலான
"நீயே நிரந்தரம்..." என்ற பாடலை ஜேர்மனைச் சேர்ந்தவர்களான Gunda Menrad & Annabelle Lindner ஆகியோர் பாடுகின்றனர்.

Sunday, September 18, 2016

K.S.MOHANAN Paintings

He is most talented artist who works at senior artist in Malayala manorama weeklyborn at Manimala ,our proud











































Friday, September 16, 2016

Producing Activated Carbon

Activated CarbonActivated carbon is a processed, porous version of carbon that has many different uses, especially adsorption and chemical reaction needs for water and gas purification. Because activated carbon particles are so porous, they have very expansive surface areas tucked into the holes and tunnels all over their surface. These areas can be filled with other materials for other purposes as well. For instance, in water purification, silver is mixed into the carbon pores in order to filter contaminants like mercury and organic arsenic from water for domestic drinking purposes. Because carbon is produced from charcoal through a relatively inexpensive and simple series of activation processes, it can be had in great quantities for many applications.

The production process of activated, or active, carbon exists in two forms. A carbonaceous source, which can exist as coal, peat, or any organic carbonaceous material is carbonized, which means the pure carbon is extracted by a heating method known as pyrolysis. Once the material is carbonized, it needs to be oxidized, or treated with oxygen, either by exposure to CO2 or steam, or by an acid-base chemical treatment.

Carbonization

Carbonization is the process of taking a carbon-rich piece of material and converting it to pure carbon through heating. This heating process, called pyrolysis, comes from an ancient technique for making charcoal. Very dense carbonaceous material is used in the beginning, because the end result needs to be extra-porous for activated carbon purposes. Carbon-rich material is placed in a small (relative to the amount of material) furnace and cooked at extreme temperatures topping 2000 degrees Celsius. What remains is usually 20-30 percent of the beginning weight, and consists of mostly carbon and a small percentage of inorganic ash. This is very similar to “coking,” a method of producing coke from charcoal, a type of carbon-based fuel.

Once the porous form of carbon is produced, it needs to undergo oxidization so it can be adsorbent. This can occur in one of two ways: gas or chemical treatment.

Gas Treatment

The activizing of carbon can be done directly through heating in a chamber while gas is pumped in. This exposes it to oxygen for oxidization purposes. When oxidized, the active carbon is susceptible to adsorption, the process of surface bonding for chemicals—the very thing that makes activated carbon so good for filtering waste and toxic chemicals out of liquids and gases. For physical gas treatment, the carbonization pyrolysis process must take place in an inert environment at 600-900 degrees Celsius. Then, an oxygenated gas is pumped into the environment and heated between 900 and 1200 degrees Celsius, causing the oxygen to bond to the carbon’s surface.

Chemical Treatment

In chemical treatment, the process is slightly different from the gas activization of carbon. For one, carbonization and chemical activation occur simultaneously. A bath of acid, base or other chemicals is prepared and the material submerged. The bath is then heated to temperatures of 450-900 degrees Celsius, much less than the heat needed for gas activation. The carbonaceous material is carbonized and then activated, all at a much quicker pace than gas activization. However, some heating processes cause trace elements from the bath to adsorb to the carbon, which can result in impure or ineffective active carbon.

Post Treatment Activated Carbon

Following oxidization, activated carbon can be processed for many different kinds of uses, with several classifiably different properties. For instance, granular activated carbon (GAC) is a sand-like product with bigger grains than powdered activated carbon (PAC), and each are used for different applications. Other varieties include impregnated carbon, which includes different elements such as silver and iodine, and polymer coated carbons.