Search This Blog

Monday, July 30, 2012

Scientists Use Microbes to Make 'Clean' Methane


 

Post-doctoral fellow Svenja Lohner, left, and Professor Alfred Spormann. Their research, along with the work of others, could help solve one of the biggest challenges for large-scale renewable energy: What to do with surplus electricity generated by photovoltaic power stations and wind farms. (Credit: Linda A. Cicero / Stanford News Service))                                        Science Daily  — Microbes that convert electricity into methane gas could become an important source of renewable energy, according to scientists from Stanford and Pennsylvania State universities.

"Most of today's methane is derived from natural gas, a fossil fuel," said Alfred Spormann, a professor of chemical engineering and of civil and environmental engineering at Stanford. "And many important organic molecules used in industry are made from petroleum. Our microbial approach would eliminate the need for using these fossil resources."Researchers at both campuses are raising colonies of microorganisms, called methanogens, which have the remarkable ability to turn electrical energy into pure methane -- the key ingredient in natural gas. The scientists' goal is to create large microbial factories that will transform clean electricity from solar, wind or nuclear power into renewable methane fuel and other valuable chemical compounds for industry.
While methane itself is a formidable greenhouse gas, 20 times more potent than CO2, the microbial methane would be safely captured and stored, thus minimizing leakage into the atmosphere, Spormann said.
"The whole microbial process is carbon neutral," he explained. "All of the CO2 released during combustion is derived from the atmosphere, and all of the electrical energy comes from renewables or nuclear power, which are also CO2-free."
Methane-producing microbes, he added, could help solve one of the biggest challenges for large-scale renewable energy: What to do with surplus electricity generated by photovoltaic power stations and wind farms.
"Right now there is no good way to store electricity," Spormann said. "However, we know that some methanogens can produce methane directly from an electrical current. In other words, they metabolize electrical energy into chemical energy in the form of methane, which can be stored. Understanding how this metabolic process works is the focus of our research. If we can engineer methanogens to produce methane at scale, it will be a game changer."
'Green' methane
Burning natural gas accelerates global warming by releasing carbon dioxide that's been trapped underground for millennia. The Stanford and Penn State team is taking a "greener" approach to methane production. Instead of drilling rigs and pumps, the scientists envision large bioreactors filled with methanogens -- single-cell organisms that resemble bacteria but belong to a genetically distinct group of microbes called archaea.
By human standards, a methanogen's lifestyle is extreme. It cannot grow in the presence of oxygen. Instead, it regularly dines on atmospheric carbon dioxide and electrons borrowed from hydrogen gas. The byproduct of this microbial meal is pure methane, which methanogens excrete into the atmosphere.
The researchers plan to use this methane to fuel airplanes, ships and vehicles. In the ideal scenario, cultures of methanogens would be fed a constant supply of electrons generated from emissions-free power sources, such as solar cells, wind turbines and nuclear reactors. The microbes would use these clean electrons to metabolize carbon dioxide into methane, which can then be stockpiled and distributed via existing natural gas facilities and pipelines when needed.
When the microbial methane is burnt as fuel, carbon dioxide would be recycled back into the atmosphere where it originated from -- unlike conventional natural gas combustion, which contributes to global warming.
"Microbial methane is much more ecofriendly than ethanol and other biofuels," Spormann said. "Corn ethanol, for example, requires acres of cropland, as well as fertilizers, pesticides, irrigation and fermentation. Methanogens are much more efficient, because they metabolize methane in just a few quick steps."
Microbial communities
For this new technology to become commercially viable, a number of fundamental challenges must be addressed.
"While conceptually simple, there are significant hurdles to overcome before electricity-to-methane technology can be deployed at a large scale," said Bruce Logan, a professor of civil and environmental engineering at Penn State. "That's because the underlying science of how these organisms convert electrons into chemical energy is poorly understood."
In 2009, Logan's lab was the first to demonstrate that a methanogen strain known as Methanobacterium palustre could convert an electrical current directly into methane. For the experiment, Logan and his Penn State colleagues built a reverse battery with positive and negative electrodes placed in a beaker of nutrient-enriched water.
The researchers spread a biofilm mixture of M. palustre and other microbial species onto the cathode. When an electrical current was applied, the M. palustre began churning out methane gas.
"The microbes were about 80 percent efficient in converting electricity to methane," Logan said.
The rate of methane production remained high as long as the mixed microbial community was intact. But when a previously isolated strain of pure M. palustre was placed on the cathode alone, the rate plummeted, suggesting that methanogens separated from other microbial species are less efficient than those living in a natural community.
"Microbial communities are complex," Spormann added. "For example, oxygen-consuming bacteria can help stabilize the community by preventing the build-up of oxygen gas, which methanogens cannot tolerate. Other microbes compete with methanogens for electrons. We want to identify the composition of different communities and see how they evolve together over time."
Microbial zoo
To accomplish that goal, Spormann has been feeding electricity to laboratory cultures consisting of mixed strains of archaea and bacteria. This microbial zoo includes bacterial species that compete with methanogensfor carbon dioxide,which the bacteria use to make acetate -- an important ingredient in vinegar, textiles and a variety of industrial chemicals.
"There might be organisms that are perfect for making acetate or methane but haven't been identified yet," Spormann said. "We need to tap into the unknown, novel organisms that are out there."
At Penn State, Logan's lab is designing and testing advanced cathode technologies that will encourage the growth of methanogens and maximize methane production. The Penn State team is also studying new materials for electrodes, including a carbon-mesh fabric that could eliminate the need for platinum and other precious metal catalysts.
"Many of these materials have only been studied in bacterial systems but not in communities with methanogens or other archaea," Logan said. "Our ultimate goal is to create a cost-effective system that reliably and robustly produces methane from clean electrical energy. It's high-risk, high-reward research, but new approaches are needed for energy storage and for making useful organic molecules without fossil fuels."
The Stanford-Penn State research effort is funded by a three-year grant from the Global Climate and Energy Project at Stanford.

Photovoltaics from Any Semiconductor: Opens Door to More Widespread Solar Energy Devices




The SFPV technology was tested for two top electrode architectures: (A) the top electrode is shaped into narrow fingers; (B) top electrode is uniformly ultrathin. (Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory)                                Science Daily — A technology that would enable low-cost, high efficiency solar cells to be made from virtually any semiconductor material has been developed by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley. This technology opens the door to the use of plentiful, relatively inexpensive semiconductors, such as the promising metal oxides, sulfides and phosphides, that have been considered unsuitable for solar cells because it is so difficult to taylor their properties by chemical means.

"It's time we put bad materials to good use," says physicist Alex Zettl, who led this research along with colleague Feng Wang. "Our technology allows us to sidestep the difficulty in chemically tailoring many earth abundant, non-toxic semiconductors and instead tailor these materials simply by applying an electric field."
Zettl, who holds joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley's Physics Department where he directs the Center of Integrated Nanomechanical Systems (COINS), is the corresponding author of a paper describing this work in the journal Nano Letters. The paper is titled "Screening-Engineered Field-Effect Solar Cells." Co-authoring it were William Regan, Steven Byrnes, Will Gannett, Onur Ergen, Oscar Vazquez-Mena and Feng Wang.
Solar cells convert sunlight into electricity using semiconductor materials that exhibit the photovoltaic effect -- meaning they absorb photons and release electrons that can be channeled into an electrical current. Photovoltaics are the ultimate source of clean, green and renewable energy but today's technologies utilize relatively scarce and expensive semiconductors, such as large crystals of silicon, or thin films of cadmium telluride or copper indium gallium selenide, that are tricky or expensive to fabricate into devices.
"Solar technologies today face a cost-to-efficiency trade-off that has slowed widespread implementation," Zettl says. "Our technology reduces the cost and complexity of fabricating solar cells and thereby provides what could be an important cost-effective and environmentally friendly alternative that would accelerate the usage of solar energy."
This new technology is called "screening-engineered field-effect photovoltaics," or SFPV, because it utilizes the electric field effect, a well understood phenomenon by which the concentration of charge-carriers in a semiconductor is altered by the application of an electric field. With the SFPV technology, a carefully designed partially screening top electrode lets the gate electric field sufficiently penetrate the electrode and more uniformly modulate the semiconductor carrier concentration and type to induce a p-n junction. This enables the creation of high quality p-n junctions in semiconductors that are difficult if not impossible to dope by conventional chemical methods.
"Our technology requires only electrode and gate deposition, without the need for high-temperature chemical doping, ion implantation, or other expensive or damaging processes," says lead author William Regan. "The key to our success is the minimal screening of the gate field which is achieved through geometric structuring of the top electrode. This makes it possible for electrical contact to and carrier modulation of the semiconductor to be performed simultaneously."
Under the SFPV system, the architecture of the top electrode is structured so that at least one of the electrode's dimensions is confined. In one configuration, working with copper oxide, the Berkeley researchers shaped the electrode contact into narrow fingers; in another configuration, working with silicon, they made the top contact ultra-thin (single layer graphene) across the surface. With sufficiently narrow fingers, the gate field creates a low electrical resistance inversion layer between the fingers and a potential barrier beneath them. A uniformly thin top contact allows gate fields to penetrate and deplete/invert the underlying semiconductor. The results in both configurations are high quality p-n junctions.
Says co-author Feng Wang, "Our demonstrations show that a stable, electrically contacted p-n junction can be achieved with nearly any semiconductor and any electrode material through the application of a gate field provided that the electrode is appropriately geometrically structured."
The researchers also demonstrated the SFPV effect in a self-gating configuration, in which the gate was powered internally by the electrical activity of the cell itself.
"The self-gating configuration eliminates the need for an external gate power source, which will simplify the practical implementation of SFPV devices," Regan says. "Additionally, the gate can serve a dual role as an antireflection coating, a feature already common and necessary for high efficiency photovoltaics."
This research was supported in part by the DOE Office of Science and in part by the National Science Foundation.

Best Comedy Short Film PUTHIYAVAN By Kalyan For Naalaya iyakunar

வீர பெண் கல்பனா சாவ்லா பற்றிய தகவல்


2003 ஆம் ஆண்டு பிப்ரவரி முதல் தேதி கொலம்பியா வான்கலம் விண்ணில் சிதைந்தது. இந்திய சமூகமும் ஒட்டுமொத்த விண்வெளி சமூகமும் சோகத்தில் மூழ்கியது. 41 வயதில் வானத்தில் ஒரு நட்சத்திரமாகிப்போன இந்தியாவின் முதல் வீராங்கனை கல்பனா சாவ்லாவைப் பற்றிதான் தெரிந்துகொள்ள இருக்கிறோம்.

1961 ஆம் ஆண்டு ஜூலை முதல் தேதி இந்தியாவின் ஹரியானா மாநிலத்திலுள்ள கர்னால் என்ற சிறிய நகரத்தில் பிறந்தார் கல்பனா சாவ்லா. நான்கு பிள்ளைகளில் அவர்தான் கடைக்குட்டி. தந்தை ஓர் வர்த்தகர், தாய் இல்லத்தரசி. மற்ற பெண் குழந்தைகளைப்போல் பொம்மைகளை வைத்து விளையாடுவதற்கு பதில் கல்பனா விமானங்களை வரைந்தும் ஓவியம் தீட்டிக்கொண்டும் இருப்பார். சிறு வயதிலேயிருந்தே விண்வெளி பொறியாளராக வரவேண்டும் என்பதுதான் கல்பனாவின் விருப்பமாக இருந்தது.

கல்பனா தன் கிராமத்து தெருக்களில் நின்றுகொண்டு ஆகாயத்தை பார்த்து வியப்பார். ஆகாயத்தில் அமைதியை கிழித்துக்கொண்டு போகும் விமானங்களின் பாதையை இமைகொட்டாமல் பார்த்துகொண்டு இருப்பார். தன் சகோதரனின் மோட்டார் சைக்கிளில் பின் இருக்கையில் அமர்ந்து பயணிக்கும் போதெல்லாம் அவரது பார்வை ஆகாயத்தை நோக்கிதான் உயரும். கர்னாவில் உள்ள தாஹூர் பள்ளியில் ஆரம்ப கல்வியை முடித்த கல்பனா சண்டிகாரில் பஞ்சாப் பொறியியல் கல்லூரியில் விமான பொறியியல் பயில விரும்பினார். அந்த துறையில் பயின்ற மற்ற அனைவரும் ஆண்களாக இருந்ததால் முதலில் பெற்றோர்கள் மறுத்தனர்.

ஆனால் கல்பனாவின் எண்ணத்தை அவர்களால் மாற்ற முடியவில்லை. அந்த கல்லூரியில் 1982 ல் இளங்கலை பட்டம் பெற்றார். ஆகாயத்தைப் பற்றியே கனவு கண்டு கொண்டிருந்த அவரை அமெரிக்கா வரவேற்றது. 1984 ஆம் ஆண்டு டெக்ஸஸ் பல்கலைகழகத்தில் விண்வெளி பொறியியல் துறையில் முதுகலைப் பட்டம் பெற்றார். நான்கு ஆண்டுகள் கழித்து கொலோராடோ பல்கலை கழகத்தில் அதே பொறியியல் துறையில் முனைவர் பட்டம் பெற்றார். முனைவர் பட்டம் பெற்ற உடனேயே நாசா எனப்படும் அமெரிக்க விண்வெளி ஆய்வு நிலையத்தில் சேர்ந்தார். எளிய மொழியில் விளக்குவதற்கு சிரமமான சில ஆராய்ட்சிகளில் ஈடுபட்டார்.

1993 ல் கல்பனா ஒரு தனியார் நிறுவனத்தில் ஆய்வு விஞ்ஞானியாக சேர்ந்தார். அதற்கு அடுத்த ஆண்டே கல்பனாவின் விண்வெளி கனவு நனவாக தொடங்கியது. விண்வெளி வீரர், வீராங்கனை பயிற்சி பெற விண்ணப்பத்திருந்த சுமார் மூவாயிரம் நபர்களிலிருந்து ஆறு பேர் தேர்ந்தெடுக்கப்பட்டனர். அவர்களுள் ஒருவர் கல்பனா. ஜான்ஸன் விண்வெளி தளத்தில் பல்வேறு உடல் மருத்துவ பரிசோதனைகள், கடுமையான நேர்கானல்கள் ஆகியவற்றை கடந்து வெற்றிகரமாக தேர்ந்தெடுக்கப்பட்டார் கல்பனா.

1995 ல் பயிற்சி முடிந்து வின்வெளி வீராங்கனையாக தகுதி பெற்றார். அவரது முதல் வின்வெளி பயணம் 1997 ஆம் ஆண்டு நவம்பர் 19 ந்தேதி தொடங்கியது. ஆறு வீரர்களுடன் ப்ளோரிடாவில் கேப் கெனவரல் முனையிலிருந்து விண்ணுக்கு செலுத்தபட்டது கொலம்பியா வான்கலம். அந்த வான்கலத்தின் இயந்திர கரங்களை இயக்கும் முக்கிய பொறுப்பு கல்பனாவுக்கு தரப்பட்டது. 16 நாட்கள் விண்வெளியில் வானத்தையும் நட்சத்திரங்களையும் நலம் விசாரித்த கல்பனா 252 தடவை பூமியை சுற்றியதோடு சுமார் ஆறரை மில்லியன் மைல் தொலைவு பயணம் செய்தார். டிசம்பர் ஐந்தாம் நாள் ஆறு விண்வெளி வீரர்களும் வெற்றியோடு பூமிக்கு திரும்பினர். அன்றைய தினம் விண்வெளிக்கு சென்று வந்த முதல் இந்திய பெண் என்ற பெருமையை பெற்றார் கல்பனா.

முதல் வின்வெளி பயணத்தை முடித்த ஐந்து ஆண்டுகளில் மீண்டும் விண்ணுக்கு செல்ல கல்பனாவுக்கு அழைப்பு வந்தது. முதல் பயணத்தில் அவர்களை பத்திரமாக தரையிறக்கிய அதே கொலம்பியா வான்கலத்தில் 2003 ஆம் ஆண்டு சனவரி 16 ந்தேதி கல்பனா உட்பட ஏழு வீரர்கள் விண்ணுக்கு பாய்ச்சப்பட்டனர். பிப்ரவரி முதல் தேதிவரை அந்த பயணம் திட்டமிடப்பட்டிருந்தது. சுமார் 80 அறிவியல் ஆராய்ட்சிகளை அவர்கள் நடத்தினர். அந்த பதினாறு நாள் பயணத்தை முடித்துகொண்டு வெற்றிக்கரமாக தரையிறங்க பதினாறு நிமிடங்கள் இருந்தபோது கொலம்பியா வான்கலம் விண்ணில் வெடித்து சிதறியது. கல்பனா என்ற நம்பிக்கை பூ 41 வயதில் உதிர்ந்தது.

கொலம்பியா விண்வெளி பயணம் மேற்கொள்ளும் முன் அவரிடம் நடத்தப்பட்ட பேட்டியில் உங்களுக்கு ஊக்கமூட்டியவர்கள் அல்லது ஊக்கமூட்டிகொண்டிருப்பவர்கள் யார் என்று அவரிடம் கேட்கப்பட்டது. அதற்கு கல்பனா இவ்வாறு கூறினார்:

முழுமனதோடு ஒரு காரியத்தில் ஈடுபடும் எவரை பார்த்தாலும் எனக்கு ஊக்கம் ஏற்படும். உதாரணத்திற்கு எனது உயர்நிலைப்பள்ளி ஆசிரியர்கள் தங்கள் பணியை அவர்கள் முழுமனதோடு செய்த விதம் கற்பிப்பதில் எங்களோடு அதிக நேரத்தை செலவிட்ட விதம், அவர்களின் பொறுமையைப் பற்றி இப்போது நினைத்து பார்த்தாலும் வியப்பாக உள்ளது. இதைத்தவிர மேலும் கண்டுபிடிப்பாளர்களின் கதைகளும் எனக்கு ஊக்கம் தரும்.

கல்பனாவின் விண்வெளி வெற்றியால் இன்று பலர் விண்வெளி கனவுகளை சுமந்துகொண்டு இருக்கின்றனர் இதுதான் கல்பனா இந்த உலகத்திற்கு விட்டு சென்ற சொத்து. அடக்கம் செய்யக்கூட அவரது உடல் கிடைக்காமல் போய்விட்டது . ஒரு சாதாரன பள்ளியில் படித்தும் பலர் வியக்கும்படி தன் கனவுகளை வாழ்ந்து காட்டினார் கல்பனா. இன்றைய மாணவர்களும் சிறந்த கல்வியோடு தன் கனவுகளை நோக்கி பயணித்தால் கல்பனாவைப் போன்று சாதிக்க முடியாதா?

வானத்தை கனவு கண்ட கல்பனா சாவ்லா அந்த வானத்தையே வசமாக்கிக்கொண்டதில் ஆச்சரியமில்லை. நாம் எல்லோரையும் விட வானத்திற்கு அருகில் சென்றுவிட்டு வந்தவர் கல்பனா. கனவோடு கலந்த உழைப்பும் முழுமனதோடு காரியத்தில் ஈடுபடும் பண்பும்தான் கல்பனாவை விண்ணுக்கு கொண்டு சென்றது. அவர் பிறந்த நமது இந்திய மண்ணுக்கு பெருமை சேர்த்தது. கல்பனா சாவ்லாவை கௌரவிக்கும் விதமாக நியூயார்க் நகரிலுள்ள ஒரு வீதிக்கு அவரது பெயர் சூட்டப்பட்டுள்ளது.
 —

The digital divide in mental health



 
(Medical Xpress) -- The internet and new media could play a vital role in the delivery of mental health care, according to a series of research papers published in the Journal of Mental Health.
Professor Til Wykes, Vice-Dean for Research at King’s College London’s Institute of Psychiatry, and editor of the Journal of Mental Health says: ‘There is huge potential for digital technologies to help us improve access to mental health care. There are still barriers to overcome such as how do we increase adherence to e-therapies and how we can overcome the digital divide. The field is still in its infancy, but the different ways in which we could use the technology for patient benefit are hugely exciting.’
Dr. Paul Wicks, honorary research worker at King’s College London’s Institute of Psychiatry and Director of R&D at PatientsLikeMe.com says: ‘Any smartphone today is more powerful than the best home computer of a decade ago. Although more people than ever before have access to mental health tools, apps, and games wherever they may be and at a pace they control, there is wide variation in quality. This special issue showcases some of the best e-mental health interventions from the academic field as this new medium reaches maturity.’
E-mental health is the use of information and communication technologies (ICT), particular the internet and new media, to support and improve mental health conditions and care. The opportunities offered by digital technologies and the internet could help address some of the most difficult problems faced by mental health services including delivery costs, limited clinical workforce, access to services and continuity of care. 
The digital divide in mental health
A survey of 121 people from community mental health services found that technology use and access were very similar to that of the general population with older people reporting less familiarity, access and confidence across a range of technologies. Black, minority and ethnic (BME) groups were more likely to access computers outside of their own homes than white individuals, highlighting the importance of ensuring service users have sufficient privacy to access online services. The survey found no evidence of a lack of interest in ICT, with older participants experiencing psychosis indicating a desire to use computers more frequently. 
Therapeutic gaming and biofeedback
Preliminary data from the Playmancer trials shows that therapeutic video games for people with impulse control disorders (such as gambling) may help them develop better coping strategies for negative emotions and stressful situations. The game combines the use of different scenarios with real-time monitoring of physiological and emotional reactions and biofeedback in order to improve participants’ impulse control, emotional regulation and problem solving skills. 
Self-monitoring and computerised feedback
The software Web-Akquasi, has been piloted in a number of mental health evaluation settings. The programme sends email reminders to patients at regular intervals with an option to enter data via a mobile device. The information is then fed back to help clinicians to monitor patients’ progress, provide additional support when required and ultimately improve and adapt treatment plans to the individual.
Promoting early intervention in eating disorders
A substantial proportion of people suffering from eating disorders seek help late or many never access treatment. From a survey of 238 individuals who used an online service for eating disorders (counselling emails and online forum), more than half (57.3%) reported that this was the first time they had access professional help – over 50% of these had engaged with other forms of support after using the online service. The findings suggest that a low-intensity, easily accessible service such as this can facilitate access to routine care. 
Understanding online drug forum communities
New recreational drugs are constantly emerging, often rendering professional literature either late or out of date. Drug-related internet forums on the other hand include educated users with technical and pharmacological knowledge. The qualitative study of 8 English language internet forums reveals strong, unified and unique communities of drug users. Understanding these communities may help provide insight into compounds consumed and methods of administration in order to better inform policy, clinical knowledge, treatment and preventative approaches. 
More information:
Papers in this issue include:
• Schmidt, U. et al. ‘E-mental health: a land of unlimited possibilities’, Journal of Mental Health, August 2012
• Wicks, P. ‘E-mental health: a medium reaches maturity’, Journal of Mental Health, August 2012
• Kelly, J. et al. ‘Intelligent real-time therapy: Harnessing the power if machine learning to optimize the delivery of momentary cognitive-behavioral interventions’, Journal of Mental Health, August 2012
• Russell, G. et al. ‘The impact of social anxiety on student learning and well-being in higher education’, Journal of Mental Health, August 2012
• Moessner, M. et al. ‘Online counselling for eating disorders: Reaching an underserved population?’ Journal of Mental Health, August 2012
• Davey, Z. et al. ‘e-Psychonauts: Conducting research in online drug forum communities’ Journal of Mental Health, August 2012
• Fernandez-Aranda, F. et al. ‘Video games as a complimentary therapy tool in mental health disorders: Playmancer, a European multicenter study’,Journal of Mental Health, August 2012
• Ennis, L. et al. ‘Can’t surf, won’t surf: The digital divide in mental health’ Journal of Mental Health, August 2012
• Bauer, S. et al. ‘Technology-enhanced monitoring in psychotherapy and e-mental health’, Journal of Mental Health, August 2012; 21(4):355-363
• Musiat, P. et al. ‘Personalised computerised feedback in E-mental health’, Journal of Mental Health, August 2012
Provided by King's College London
"Mental health 2.0." July 27th, 2012. http://medicalxpress.com/news/2012-07-mental-health.html
Posted by
Robert Karl Stonjek

DIMA DMITRIEV Paintings


Dima Dmitriev was born in Moscow, Russia, and is the second generation of artists in his family.  He moved to Prague, Czech Republic, where he graduated from the Academy of Arts, Architecture and Design. As his paintings gained attention and praise at fine art exhibitions throughout Europe, Dima became one of the most talked about young artists living in Prague’s flourishing artistic community.  Dmitriev has participated in solo and group exhibitions in Europe, North America, and Asia.


Dima’s paintings represent forms of “visual paradise.”  He describes this as the process of extracting the color, light, and texture from real places and distilling these onto his canvases as idealized worlds. Dima rarely uses a brush. His preferred tool is the palette knife. Dima also adds depth and color saturation to some of his works by starting with black, rather than the traditional white, canvas. Dmitriev’s Impressionistic composition and style combined with his mastery of the palette knife create oil paintings that are vibrant and sculptural. His works often include themes of childhood, nature and the sea. 


Some big international companies, for example, AT&T (USA), Vodafone (UK) or AWD Holding AG (Germany) have added his paintings to their art collections. As well as many private collectors from Czech Republic, USA, Spain, Germany, Russia, Switzerland, Hong Kong, United Kingdom, Australia, Qatar, Dominican Republic and others.





Palette knife painting

Dima Dmitriev is a painter without a brush creating impressionist style paintings with the palette knife. I love painting with a palette knife because the creative thinking is very different than with a brush. Dima is a master of palette knife painting. He visits locations to take photographs but creates all the work in his studio. I don't agree 100% with that and feel it's important to also paint on location to understand the light better. There are things which you just can not see in a photograph. Most of Dima's paintings are some kind of 'visual paradise' which does not really exist because behind the facade of the paradise are normal people leading normal lives with all the problems of existence. If you believe that painting should question, then his art fails on that point and questions very little. For some these will be the chocolate box image. What is important for myself is the act of creating rather than the final outcome. Art is a journey and not a destination. Like the Buddha said "Enjoy what there is to enjoy, suffer what there is to suffer."









































































Exhibits and Shows:

1994-98 "Domino" Gallery - Prague, Czech Republic
1998-99 "U Cerveneho Beranka" Gallery - Prague, Czech Republic
1999-05 "D-Art" Gallery - Prague, Czech Republic
2000-03 "Arman-Art" Gallery - Prague, Czech Republic
2004 "Moscow Contemporary Art Gallery" - Moscow, Russia
2004 "Horace Richter" Gallery - Old Jaffo/Tel-Aviv, Israel
2004-05 "Art Gallery" - Karlstejn, Czech Republic
2006 "Cerale Exhibition" Gallery - Ceriale, Italy
2005-11 "Vam-Art" Gallery - Prague, Czech Republic
2008 "Art Ireland 2008" - Dublin, Ireland
2008-09 "Artcity" Gallery - Prague, Czech Republic
2006-11 "Michalska" Gallery - Prague, Czech Republic
2010 "Allegro Arts" - Woodside, California
2010-11 "Canvasations" Gallery - Redwood City, California
2011 "Konditorei" - Portola Valley, California
2011 "Art11" Gallery - Prague, Czech Republic

Prizes:

2004 "Oscar Artisti di Successo" Accademia Severiade, Milano, Italy
2005 I. prize, volume for a prize "Citta di Cereale" Pro Loco Ceriale, Ceriale, Italy
2005 I. prize, volume for a prize "Antonello da Messina" Messina, Italy
2005 II. prize, "Web Convivio 2005" Il Convivio, Messina, Italy
2006 Special Prize, volume for a prize "Filippo Juvara" Messina, Italy
2007 III. prize, volume for a prize "Un uomo, la sua citta" Il Capricorno, Corinaldo, Italy
2007 III. prize, A.L.I.A.S. org., Melbourne, Australia
2009 Artmajeur Silver Award 2009
2010 Artmajeur Silver Award 2010
2011 Artmajeur Silver Award 2011
2011 I. prize, 2nd Bienale di Arte "Citta di Senigallia 2011"
Dima Dmitriev
1974 born in Moscow, Russia
Lives and works in Prague, Czech Republic
Education

Academy of Arts, Archchitecture and Design Prague - Fashion Designer