வயர் இணைப்பு எதுவும் இன்றி இணைப்பைத் தரும் புளுடூத் தொழில்நுட்பம்(Bluetooth Technology) எவ்வாறு செயல்படுகிறது? என்ற கேள்வி நம்மில் பலருக்கு எழலாம்.
புளுடூத் முதலில் நமக்கு அறிமுகமான போது, தகவல்கள் பரிமாற்றத்திற்கு மிக அருமையான வசதியாக இருந்தது. இருப்பினும் பல்வேறு பிரச்னைகளை சந்திக்க நேர்ந்தது.
தகவல் பரிமாற்றத்திற்கான சாதனங்களை இணைப்பதில் சிக்கல், கடவுச்சொல் அமைத்து இயக்குவதில் பிரச்னை, திடீரென தகவல் இணைப்பு அறுந்து போதல் மற்றும் பிற உடனடியாகத் தீர்க்க இயலாத சிக்கல்களும் இருந்தன. இவை அனைத்தும் புளுடூத் 4 தொழில்நுட்பம் தீர்த்து விடும் என்று எதிர்பார்க்கப்படுகிறது.
புளுடூத் 2ஐக் காட்டிலும் பதிப்பு 3, சற்றுக் கூடுதல் வேகத்தில் தகவல்களினைக் கடத்தியது. பதிப்பு 2.1 ன் வேகம் 2Mbps ஆக இருந்தது. பதிப்பு 3ன் வேகம் 26Mbps ஆக உள்ளது. இது வீடியோ ஸ்ட்ரீமிங் போன்ற பணிகளுக்கு மிகவும் உதவியது.
புளுடூத் 4 இவற்றைக் காட்டிலும் கூடுதல் திறன் கொண்டதாக இருக்கும். ஐந்திலிருந்து பத்து மடங்கு வேகக் கூடுதல் இருக்கும். அதிக நாட்கள் மின்திறன் தரும் பற்றரியுடன் இயங்கும் திறன் கொண்டதாக இருக்கும். இதனால் ட்ரெட்மில் போன்ற தனி நபர் உடல் நலன் கணக்கிடும் சாதனங்களில் இதன் செயல்பாடு நமக்கு மிக மிக உதவியாக இருக்கும்.
இதற்கு அடுத்ததாக என்.எப்.சி எனப்படும் அண்மைக்கள தகவல் பரிமாற்றம்(Near Field Communication) திறன் கொண்ட சிப்களின் செயல்பாட்டிற்கு இந்த புளுடூத் பதிப்பு 4 மிகவும் பயன்படும். புளுடூத் 4 இந்த தொழில்நுட்பம் கொண்ட போன்களுடன் எளிதில் தகவல்களைப் பரிமாறிக் கொள்ள முடியும்.
மடிக்கணணி, கைபேசி மற்றும் Router போன்ற சாதனங்களின் இணைப்பு, புளுடூத் பதிப்பு 4 மூலம் அதிகத் திறன் கொண்டதாக அமையும்.
இந்த தொழில் நுட்பத்திற்கேற்ப வடிவமைக்கப்படும் சாதனங்கள் அனைத்தும், புளுடூத் பதிப்பு 2 மற்றும் 3 ஆகியவற்றையும் கையாளும். புளுடூத் 4 ஏற்கனவே Motorola_Droid_ Razr_Maxx ஆகிய மொபைல் போன்களில் இணைக்கப்பட்டுள்ளது.
இந்த புதிய தொழில் நுட்பத்திற்கு Bluetooth Smart Ready எனப் பெயரிடப்பட்டுள்ளது. இதுகுறித்த மேலதிக தகவல்களை இந்த தளத்தின் மூலம் அறிந்து கொள்ளலாம்.
|
Science Daily — Future prospects for superior new organic electronic devices are brighter now thanks to a new study by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab). Working at the Lab's Molecular Foundry, a DOE nanoscience center, the team has provided the first experimental determination of the pathways by which electrical charge is transported from molecule-to-molecule in an organic thin film. Their results also show how such organic films can be chemically modified to improve conductance.
"We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance," says Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab's Materials Sciences Division and who led this study. "Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices."
Salmeron and Shaul Aloni, also of the Materials Sciences Division, are the corresponding authors of a paper in the journalNanoLetters that describes this work. The paper is titled "Electron Microscopy Reveals Structure and Morphology of One Molecule Thin Organic Films." Other co-authors were Virginia Altoe, Florent Martin and Allard Katan.
Organic electronics, also known as plastic or polymer electronics, are devices that utilize carbon-based molecules as conductors rather than metals or semiconductors. They are prized for their low costs, light weight and rubbery flexibility. Organic electronics are also expected to play a big role in molecular computing, but to date their use has been hampered by low electrical conductance in comparison to metals and semiconductors.
"Chemists and engineers have been using their intuition and trial-and-error testing to make progress in the field but at some point you hit a wall unless you understand what is going on at the molecular level, for example, how electrons or holes flow through or across molecules, how the charge transport depends on the structure of the organic layers and the orientation of the molecules, and how the charge transport responds to mechanical forces and chemical inputs," Salmeron says. "With our experimental results, we have shown that we can now provide answers for these questions."
In this study, Salmeron and his colleagues used electron diffraction patterns to map the crystal structures of molecular films made from monolayers of short versions of commonly used polymers containing long chains of thiophene units. They focused specifically on pentathiophene butyric acid (5TBA) and two of its derivatives (D5TBA and DH5TBA) that were induced to self-assemble on various electron-transparent substrates. Pentathiophenes -- molecules containing a ring of four carbon and one sulfur atoms -- are members of a well-studied and promising family of organic semiconductors.
Obtaining structural crystallographic maps of monolayer organic films using electron beams posed a major challenge, as Aloni explains.
"These organic molecules are extremely sensitive to high energy electrons," he says. "When you shoot a beam of high energy electrons through the film it immediately affects the molecules. Within few seconds we no longer see the signature intermolecular alignment of the diffraction pattern. Despite this, when applied correctly, electron microscopy becomes essential tool that can provide unique information on organic samples."
Salmeron, Aloni and their colleagues overcame the challenge through the combination of a unique strategy they developed and a transmission electron microscope (TEM) at the Molecular Foundry's Imaging and Manipulation of Nanostructures Facility. Electron diffraction patterns were collected as a parallel electron beam was scanned over the film, then analyzed by computer to generate structural crystallographic maps.
"These maps contain uncompromised information of the size, symmetry and orientation of the unit cell, the orientation and structure of the domains, the degree of crystallinity, and any variations on the micrometer scale," says first author Altoe. "Such data are crucial to understanding the structure and electrical transport properties of the organic films, and allow us to track small changes driven by chemical modifications of the support films."
In their paper, the authors acknowledge that to gain structural information they had to sacrifice some resolution.
"The achievable resolution of the structural map is a compromise between sample radiation hardness, detector sensitivity and noise, and data acquisition rate," Salmeron says. "To keep the dose of high energy electrons at a level the monolayer film could support and still be able to collect valuable information about its structure, we had to spread the beam to a 90 nanometer diameter. However a fast and direct control of the beam position combined with the use of fast and ultrasensitive detectors should allow for the use of smaller beams with a higher electron flux, resulting in a better than 10 nanometer resolution."
While the combination of organic molecular films and substrates in this study conduct electrical current via electron holes (positively-charged energy spaces), Salmeron and his colleagues say their structural mapping can also be applied to materials whose conductance is electron-based.
"We expect our methodology to have widespread applications in materials research," Salmeron says.
Aloni and Altoe say this methodology is now available at the Imaging and Manipulation of Nanostructures Facility for users of the Molecular Foundry.
This research was supported by the DOE Office of Science.