Search This Blog

Monday, May 16, 2011

Portable Tech Might Provide Drinking Water, Power to Villages

Portable Tech Might Provide Drinking Water, Power to Villages

ScienceDaily (May 4, 2011) — Researchers have developed an aluminum alloy that could be used in a new type of mobile technology to convert non-potable water into drinking water while also extracting hydrogen to generate electricity.

Such a technology might be used to provide power and drinking water to villages and also for military operations, said Jerry Woodall, a Purdue University distinguished professor of electrical and computer engineering.
The alloy contains aluminum, gallium, indium and tin. Immersing the alloy in freshwater or saltwater causes a spontaneous reaction, splitting the water into hydrogen and oxygen molecules. The hydrogen could then be fed to a fuel cell to generate electricity, producing water in the form of steam as a byproduct, he said.
"The steam would kill any bacteria contained in the water, and then it would condense to purified water," Woodall said. "So, you are converting undrinkable water to drinking water."
Because the technology works with saltwater, it might have marine applications, such as powering boats and robotic underwater vehicles. The technology also might be used to desalinate water, said Woodall, who is working with doctoral student Go Choi.
A patent on the design is pending.
Woodall envisions a new portable technology for regions that aren't connected to a power grid, such as villages in Africa and other remote areas.
"There is a big need for this sort of technology in places lacking connectivity to a power grid and where potable water is in short supply," he said. "Because aluminum is a low-cost, non-hazardous metal that is the third-most abundant metal on Earth, this technology promises to enable a global-scale potable water and power technology, especially for off-grid and remote locations."
The potable water could be produced for about $1 per gallon, and electricity could be generated for about 35 cents per kilowatt hour of energy.
"There is no other technology to compare it against, economically, but it's obvious that 34 cents per kilowatt hour is cheap compared to building a power plant and installing power lines, especially in remote areas," Woodall said.
The unit, including the alloy, the reactor and fuel cell might weigh less than 100 pounds.
"You could drop the alloy, a small reaction vessel and a fuel cell into a remote area via parachute," Woodall said. "Then the reactor could be assembled along with the fuel cell. The polluted water or the seawater would be added to the reactor and the reaction converts the aluminum and water into aluminum hydroxide, heat and hydrogen gas on demand."
The aluminum hydroxide waste is non-toxic and could be disposed of in a landfill.
The researchers have a design but haven't built a prototype.

Pairing Quantum Dots With Fullerenes for Nanoscale Photovoltaics


Pairing Quantum Dots With Fullerenes for Nanoscale Photovoltaics

ScienceDaily (May 10, 2011) — In a step toward engineering ever-smaller electronic devices, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have assembled nanoscale pairings of particles that show promise as miniaturized power sources. Composed of light-absorbing, colloidal quantum dots linked to carbon-based fullerene nanoparticles, these tiny two-particle systems can convert light to electricity in a precisely controlled way.

"This is the first demonstration of a hybrid inorganic/organic, dimeric (two-particle) material that acts as an electron donor-bridge-acceptor system for converting light to electrical current," said Brookhaven physical chemist Mircea Cotlet, lead author of a paper describing the dimers and their assembly method in Angewandte Chemie.
By varying the length of the linker molecules and the size of the quantum dots, the scientists can control the rate and the magnitude of fluctuations in light-induced electron transfer at the level of the individual dimer. "This control makes these dimers promising power-generating units for molecular electronics or more efficient photovoltaic solar cells," said Cotlet, who conducted this research with materials scientist Zhihua Xu at Brookhaven's Center for Functional Nanomaterials (CFN).
Scientists seeking to develop molecular electronics have been very interested in organic donor-bridge-acceptor systems because they have a wide range of charge transport mechanisms and because their charge-transfer properties can be controlled by varying their chemistry. Recently, quantum dots have been combined with electron-accepting materials such as dyes, fullerenes, and titanium oxide to produce dye-sensitized and hybrid solar cells in the hope that the light-absorbing and size-dependent emission properties of quantum dots would boost the efficiency of such devices. But so far, the power conversion rates of these systems have remained quite low.
"Efforts to understand the processes involved so as to engineer improved systems have generally looked at averaged behavior in blended or layer-by-layer structures rather than the response of individual, well-controlled hybrid donor-acceptor architectures," said Xu.
The precision fabrication method developed by the Brookhaven scientists allows them to carefully control particle size and interparticle distance so they can explore conditions for light-induced electron transfer between individual quantum dots and electron-accepting fullerenes at the single molecule level.
The entire assembly process takes place on a surface and in a stepwise fashion to limit the interactions of the components (particles), which could otherwise combine in a number of ways if assembled by solution-based methods. This surface-based assembly also achieves controlled, one-to-one nanoparticle pairing.
To identify the optimal architectural arrangement for the particles, the scientists strategically varied the size of the quantum dots -- which absorb and emit light at different frequencies according to their size -- and the length of the bridge molecules connecting the nanoparticles. For each arrangement, they measured the electron transfer rate using single molecule spectroscopy.
"This method removes ensemble averaging and reveals a system's heterogeneity -- for example fluctuating electron transfer rates -- which is something that conventional spectroscopic methods cannot always do," Cotlet said.
The scientists found that reducing quantum dot size and the length of the linker molecules led to enhancements in the electron transfer rate and suppression of electron transfer fluctuations.
"This suppression of electron transfer fluctuation in dimers with smaller quantum dot size leads to a stable charge generation rate, which can have a positive impact on the application of these dimers in molecular electronics, including potentially in miniature and large-area photovoltaics," Cotlet said.
"Studying the charge separation and recombination processes in these simplified and well-controlled dimer structures helps us to understand the more complicated photon-to-electron conversion processes in large-area solar cells, and eventually improve their photovoltaic efficiency," Xu added.
A U.S. patent application is pending on the method and the materials resulting from using the technique, and the technology is available for licensing. This work was funded by the DOE Office of Science.

Looking Inside Nanomaterials in 3-D

Looking Inside Nanomaterials in 3-D

ScienceDaily (May 16, 2011) — Scientists from Denmark, China and USA have developed a new method for revealing 3-D images of the structure inside a material.

Most solid materials are composed of millions of small crystals, packed together to form a fully dense solid. The orientations, shapes, sizes and relative arrangement of these crystals are important in determining many material properties.
Traditionally, it has only been possible to see the crystal structure of a material by looking at a cut surface, giving just 2D information. In recent years, x-ray methods have been developed that can be used to look inside a material and obtain a 3-D map of the crystal structure. However, these methods have a resolution limit of around 100nm (one nanometer is 100,000 times smaller than the width of a human hair).
In contrast, the newly developed technique now published in the journal Science, allows 3-D mapping of the crystal structure inside a material down to nanometer resolution, and can be carried out using a transmission electron microscope, an instrument found in many research laboratories.
Samples must be thinner than a few hundred nanometers. However, this limitation is not a problem for investigations of crystal structures inside nanomaterials, where the average crystal size is less than 100 nanometers, and such materials are investigated all over the world in a search for materials with new and better properties than the materials we use today.
For example, nanomaterials have an extremely high strength and an excellent wear resistance and applications therefore span from microelectronics to gears for large windmills. The ability to collect a 3-D picture of the crystal structure in these materials is an important step in being able to understand the origins of their special properties.
An important advantage of such 3-D methods is that they allow the changes taking place inside a material to be observed directly. For example, the mapping may be repeated before and after a heat treatment revealing how the structure changes during heating.
This new technique has a resolution 100 times better than existing non-destructive 3-D techniques and opens up new opportunities for more precis

Best Way to Measure Dark Energy Just Got Better

Best Way to Measure Dark Energy Just Got Better

ScienceDaily (Jan. 14, 2011) — Dark energy is a mysterious force that pervades all space, acting as a "push" to accelerate the Universe's expansion. Despite being 70 percent of the Universe, dark energy was only discovered in 1998 by two teams observing Type Ia supernovae. A Type 1a supernova is a cataclysmic explosion of a white dwarf star.

These supernovae are currently the best way to measure dark energy because they are visible across intergalactic space. Also, they can function as "standard candles" in distant galaxies since the intrinsic brightness is known. Just as drivers estimate the distance to oncoming cars at night from the brightness of their headlights, measuring the apparent brightness of a supernova yields its distance (fainter is farther). Measuring distances tracks the effect of dark energy on the expansion of the Universe.
The best way of measuring dark energy just got better, thanks to a new study of Type Ia supernovae led by Ryan Foley of the Harvard-Smithsonian Center for Astrophysics. He has found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color.
"Dark energy is the biggest mystery in physics and astronomy today. Now, we have a better way to tackle it," said Foley, who is a Clay Fellow at the Center. He presented his findings in a press conference at the 217th meeting of the American Astronomical Society.
The new tool also will help astronomers to firm up the cosmic distance scale by providing more accurate distances to faraway galaxies.
Type Ia supernovae are used as standard candles, meaning they have a known intrinsic brightness. However, they're not all equally bright. Astronomers have to correct for certain variations. In particular, there is a known correlation between how quickly the supernova brightens and dims (its light curve) and the intrinsic peak brightness.
Even when astronomers correct for this effect, their measurements still show some scatter, which leads to inaccuracies when calculating distances and therefore the effects of dark energy. Studies looking for ways to make more accurate corrections have had limited success until now.
"We've been looking for this sort of 'second-order effect' for nearly two decades," said Foley.
Foley discovered that after correcting for how quickly Type Ia supernovae faded, they show a distinct relationship between the speed of their ejected material and their color: the faster ones are slightly redder and the slower ones are bluer.
Previously, astronomers assumed that redder explosions only appeared that way because of intervening dust, which would also dim the explosion and make it appear farther than it was. Trying to correct for this, they would incorrectly calculate that the explosion was closer than it appeared. Foley's work shows that some of the color difference is intrinsic to the supernova itself.
The new study succeeded for two reasons. First, it used a large sample of more than 100 supernovae. More importantly, it went back to "first principles" and reexamined the assumption that Type Ia supernovae are one average color.
The discovery provides a better physical understanding of Type Ia supernovae and their intrinsic differences. It also will allow cosmologists to improve their data analysis and make better measurements of dark energy -- an important step on the road to learning what this mysterious force truly is, and what it means for the future of the cosmos.

New Evidence on Origin of Supernovas

New Evidence on Origin of Supernovas

ScienceDaily (Apr. 27, 2011) — Astronomers may now know the cause of an historic supernova explosion that is an important type of object for investigating dark energy in the universe. The discovery, made using NASA's Chandra X-ray Observatory, also provides strong evidence that a star can survive the explosive impact generated when a companion star goes supernova.

The new study examined the remnant of a supernova observed by the Danish astronomer Tycho Brahe in 1572. The object, dubbed Tycho for short, was formed by a Type Ia supernova, a category of stellar explosion useful in measuring astronomical distances because of their reliable brightness. Type Ia supernovas have been used to determine that the universe is expanding at an accelerating rate, an effect attributed to the prevalence of an invisible, repulsive force throughout space called dark energy.
A team of researchers analyzed a deep Chandra observation of Tycho and found an arc of X-ray emission in the supernova remnant. Evidence supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star.
"There has been a long-standing question about what causes Type Ia supernovas," said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. "Because they are used as steady beacons of light across vast distances, it is critical to understand what triggers them."
One popular scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other main competing theory, a white dwarf pulls material from a "normal," or sun-like, companion star until a thermonuclear explosion occurs. Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one.
In addition, the Tycho study seems to show the remarkable resiliency of stars, as the supernova explosion appears to have blasted very little material off the companion star. Previously, studies with optical telescopes have revealed a star within the remnant that is moving much more quickly than its neighbors, hinting that it could be the missing companion.
"It looks like this companion star was right next to an extremely powerful explosion and it survived relatively unscathed," said Q. Daniel Wang of the University of Massachusetts in Amherst. "Presumably it was also given a kick when the explosion occurred. Together with the orbital velocity, this kick makes the companion now travel rapidly across space."
Using the properties of the X-ray arc and the candidate stellar companion, the team determined the orbital period and separation between the two stars in the binary system before the explosion. The period was estimated to be about 5 days, and the separation was only about a millionth of a light year, or less than a tenth the distance between the Sun and Earth. In comparison, the remnant itself is about 20 light years across.
Other details of the arc support the idea that it was blasted away from the companion star. For example, the X-ray emission of the remnant shows an apparent "shadow" next to the arc, consistent with the blocking of debris from the explosion by the expanding cone of material stripped from the companion.
"This stripped stellar material was the missing piece of the puzzle for arguing that Tycho's supernova was triggered in a binary with a normal stellar companion," said Lu. "We now seem to have found this piece."
The shape of the arc is different from any other feature seen in the remnant. Other features in the interior of the remnant include recently announced stripes, which have a different shape and are thought to be features in the outer blast wave caused by cosmic ray acceleration.
These results will appear in the May 1st issue of The Astrophysical Journal. The other authors of the paper include M.Y. Ge, J.L. Qu, S.J. Zheng and Y. Chen from the Institute of High Energy Physics, and X.J. Yang from Xiangtan University. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington.

Improving Photosynthesis? Solar Cells Beat Plants at Harvesting Sun's Energy, for Now

Improving Photosynthesis? Solar Cells Beat Plants at Harvesting Sun's Energy, for Now

ScienceDaily (May 12, 2011) — In a head-to-head battle of harvesting the sun's energy, solar cells beat plants, according to a new paper in Science. But scientists think they can even up the playing field, says researcher David Kramer at Michigan State University.

Plants are less efficient at capturing the energy in sunlight than solar cells mostly because they have too much evolutionary baggage. Plants have to power a living thing, whereas solar cells only have to send electricity down a wire. This is a big difference because if photosynthesis makes a mistake, it makes toxic byproducts that kill the organism. Photosynthesis has to be conservative to avoid killing the organisms it powers.
"This is critical since it's the process that powers all of life in our ecosystem," said Kramer, a Hannah Distinguished Professor of Photosynthesis and Bioenergetics. "The efficiency of photosynthesis, and our ability to improve it, is critical to whether the entire biofuels industry is viable."
The annually averaged efficiency of photovoltaic electrolysis based on silicon semiconductors to produce fuel in the form of hydrogen is about 10 percent, while a plant's annually averaged efficiency using photosynthesis to form biomass for fuel is about 1 or 2 percent.
Plants, following the path of evolution, are primarily interested in reproducing and repairing themselves. The efficiency at which they produce stored solar energy in biomass is secondary.
Still, things can change.
Just as early Native Americans manipulated skinny, non-nutritious Teosinte into fat, juicy kernel corn, today's plants can be manipulated to become much better sources of energy.
Researcher Arthur J.Nozik, a NREL senior research fellow, and Senior Scientist Mark Hanna working at DOE's National Renewable Energy Laboratory (NREL), recently demonstrated how a multi-junction, tandem solar cell for water splitting to produce hydrogen can provide higher efficiency -- more than 40 percent -- by using multiple semiconductors and/or special photoactive organic molecules with different band gaps arranged in a tandem structure.
The coupling of different materials with different gaps means photons can be absorbed and converted to energy over a wider range of the solar spectrum.
"In photovoltaics, we know that to increase power conversion efficiency you have to have different band gaps (i.e., colors) in a tandem arrangement so they can more efficiently use different regions of the solar spectrum," Nozik said. "If you had the same gap, they would compete with each other and both would absorb the same photon energies and not enhance the solar conversion efficiency."
Photosynthesis does use two gaps based on chlorophyll molecules to provide enough energy to drive the photosynthesis reaction. But the two gaps have the same energy value, which means they don't help each other to produce energy over a wider stretch of the spectrum of solar light and enhance conversion efficiency.
Furthermore, most plants do use the full intensity of sunlight but divert some of it to protect the plant from damage. Whereas photovoltaics use the second material to gain that photoconversion edge, plants do not, Nozik noted.
One of NREL's roles at the DOE workshop was to help make it clear how the efficiency of photosynthesis could be improved by re-engineering the structure of plants through modern synthetic biology and genetic manipulation based on the principles of high efficiency photovoltaic cells, Nozik said. In synthetic biology plants can be built from scratch, starting with amino acid building blocks, allowing the formation of optimum biological band gaps.
The newly engineered plants would be darker, incorporating some biological pigments in certain of nature's flora that would be able to absorb photons in the red and infrared regions of the solar spectrum.
As plants store more solar energy efficiently, they potentially could play a greater role as alternative renewable fuel sources. The food that plants provide also would get a boost. And that would mean less land would be required to grow an equivalent amount of food.
The new information in the Science manuscript will help direct the development of new plants that have a better propensity for reducing carbon dioxide to biomass. This could spur exploration of blue algae, which not only comprise about one quarter of all plant life, but are ideal candidates for being genetically engineered into feedstock, because they absorb light from an entirely different part of the spectrum compared to most other plants.
"It would be the biological equivalent of a tandem photovoltaic cell," said Robert Blankenship, one of the lead authors in the Science paper who studies photosynthesis at Washington University in St. Louis. "And those can have very high efficiencies."

Toward faster transistors: Physicists discover physical phenomenon that could boost computers' clock speed

Toward faster transistors: Physicists discover physical phenomenon that could boost computers' clock speed