Search This Blog

Showing posts with label Biomedicine. Show all posts
Showing posts with label Biomedicine. Show all posts

Wednesday, August 3, 2016

DNA vaccines (U.S. Government Doses First Volunteer with experimental DNA vaccine against Zika. )

Traditional Vaccines: The development of vaccination against harmful pathogenic microorganisms represents an important advancement in the history of modern medicine. In the past, traditional vaccination has relied on two specific types of microbiological preparations to produce material for immunization and generation of a protective immune response. These two categories involve either living infectious material that has been manufactured in a weaker state and therefore inhibits the vaccine from causing disease, or inert, inactivated, or subunit preparations.
DNA vaccination is a technique for protecting an animal against disease by injecting it with genetically engineered DNA so cells directly produce an antigen, resulting in a protective immunological response.

Vaccination consists of stimulating the immune system with an infectious agent, or components of an infectious agent, modified in such a manner that no harm or disease is caused, but ensuring that when the host is confronted with that infectious agent, the immune system can adequately neutralize it before it causes any ill effect. For over a hundred years vaccination has been effected by one of two approaches: either introducing specific antigens against which the immune system reacts directly; or introducing live attenuated infectious agents that replicate within the host without causing disease synthesize the antigens that subsequently prime the immune system.
Recently, a radically new approach to vaccination has been developed. It involves the direct introduction into appropriate tissues of a plasmid containing the DNA sequence encoding the antigen(s) against which an immune response is sought, and relies on the in situ production of the target antigen. This approach offers a number of potential advantages over traditional approaches, including the stimulation of both B- and T-cell responses, improved vaccine stability, the absence of any infectious agent and the relative ease of large-scale manufacture. As proof of the principle of DNA vaccination, immune responses in animals have been obtained using genes from a variety of infectious agents, including influenza virus, hepatitis B virus, human immunodeficiency virus, rabies virus, lymphocytic chorio-meningitis virus, malarial parasites and mycoplasmas. In some cases, protection from disease in animals has also been obtained. However, the value and advantages of DNA vaccines must be assessed on a case-by-case basis and their applicability will depend on the nature of the agent being immunized against, the nature of the antigen and the type of immune response required for protection.


The field of DNA vaccination is developing rapidly. Vaccines currently being developed use not only DNA, but also include adjuncts that assist DNA to enter cells, target it towards specific cells, or that may act as adjuvants in stimulating or directing the immune response. Ultimately, the distinction between a sophisticated DNA vaccine and a simple viral vector may not be clear. Many aspects of the immune response generated by DNA vaccines are not understood. However, this has not impeded significant progress towards the use of this type of vaccine in humans, and clinical trials have begun.
The first such vaccines licensed for marketing are likely to use plasmid DNA derived from bacterial cells. In future, others may use RNA or may use complexes of nucleic acid molecules and other entities. These guidelines address the production and control of vaccines based on plasmid DNA intended for use in humans. The purpose of these guidelines is to indicate:

  • appropriate methods for the production and control of plasmid DNA vaccines; and

  • specific information that should be included in submissions by manufacturers to national control authorities in support of applications for the authorization of clinical trials and marketing.
It is recognized that the development and application of nucleic acid vaccines are evolving rapidly. Thus, their control should be approached in a flexible manner so that it can be modified as experience is gained in production and use. The intention of these guidelines is to provide a scientifically sound basis for the production and control of DNA vaccines intended for use in humans, and to assure their consistent ssafety and efficacy. Individual countries may wish to use these guidelines to develop their own national guidelines for DNA vaccines.
Vaccines of the future. fast, designed on computer, effective.
The study involves a novel type of vaccination called a DNA vaccine, in which genes from the virus are shot under high pressure into a person’s arm. While easy to design, no DNA vaccine has ever reached commercialization.
With the, federal scientists are a demonstrating the power of biotechnology to whip up countermeasures to new threats. The vaccine they developed is a small stretch of genetic material from the virus, which is fired into a person’s upper arm through a device that acts like a high-pressure squirt gun.
The added genes then cause the person’s body to manufacture certain harmless parts of the Zika virus, including its protein shell. That should train a person’s immune system to recognize the virus and fight it off. 

Cecile G. Tamura

Friday, February 15, 2013

‎"Pharmaceuticals from crab shells" Yapeeeeeeeeeeee!!!!



The pharmaceutical NANA is 50 times more expensive than gold. Now it can be produced from chitin - a very cheap natural resource. The process was made possible by genetically modifying mold fungi.

Usually, mould fungi are nothing to cheer about – but now they can be used as "chemical factories". Scientists at the Vienna University of Technology have succeeded in introducing bacterial genes into the fungus Trichoderma, so that the fungus can now produce important chemicals for the pharmaceutical industry.The raw material used by the fungus is abundant - it is chitin, which makes up the shells of crustaceans.

Thursday, August 30, 2012

Telling Body Time

A new method could make assessing a person’s circadian rhythms easier, paving the way for increased drug effectiveness.

By Hayley Dunning |
FLICKR CREATIVE COMMONS, AARON GELLER
Circadian rhythms dictate the 24-hour shifts in gene expression, protein levels, and various cellular processes throughout the day, such as melatonin affecting our sleep-wake cycle. Such changes in cell activity—in particular, cyclical changes in metabolism— can greatly influence the effectiveness of a drug and the severity of its side effects, depending on when it is administered.
However, each individual has unique circadian timing, with “body time” being offset by as much as 6 hours between people, making it difficult—if not impossible—for doctors to consider when giving drugs. Previous attempts to assess a person’s body time have relied on intense, repeated sampling procedures impractical for clinical applications. But in a study published yesterday (August 27) in the National Academy of Sciences proceedings, researchers have demonstrated a new method that requires only two blood samples taken 12 hours apart.
“Due to a combination of genetics and environment, there is a wide diversity of clock times among humans, from morning larks to night owls,” chronobiologist Steven Brown of the University of Zurich, who was not involved in the study, said in an email. “It would be advantageous to have a simple method to accurately determine clock time before a particular treatment, particularly for a toxic one like chemotherapy of cancer.”
Determining where in the cycle a person’s body clock is at any given time typically involves measuring melatonin and/or cortisol levels. These chemicals show robust patterns over a 24-hour period. However, random sampling must be done continuously for more than a day under controlled environmental conditions to determine the patient’s baseline levels. In the new study, Hiroki Ueda and colleagues at the RIKEN Center for Developmental Biology in Kobe, Japan, measured as many oscillating metabolites as possible to create a chart of how they fluctuate in proportion.
The concept is based on 16th-century botanist Carolus Linnaeus’ flower clock. “Each flower has different timing for opening and closing,” said Ueda. Linnaeus reasoned that if he knew when a range of flowers opened and closed in a day, he could create a garden to tell the time. “Likewise,” Ueda said, “each metabolite has different timing, so I applied this concept to the human body.”
Three study participants had blood samples taken every hour for 1.5 days, under normal sleep-wake conditions and then again after their normal cycles had been disrupted by a forced 28-hour sleep-wake schedule. Such disruption of natural circadian cycles is known to occur in shift workers or people travelling between time zones, and can cause weight gain and obesity, metabolic abnormalities and diabetes, and even heart disease.
The researchers measured the levels of 58 metabolites by liquid chromatography-mass spectrometry and used radioimmunological assays to assess cortisol and melatonin levels. The metabolites, whose levels cycled in participants during their normal cycles, were tracked against patterns of melatonin and cortisol to calibrate the metabolite levels with the body clock. The researchers then drew up a table based on the proportions of metabolites across body times, and used it to estimate the body time of study participants using just two samples taken 12 hours apart. During both disrupted and normal cycles, the team estimated body times within 3 hours of real body time, as shown by the traditional cortisol/melatonin method involving sampling as often as every 20 minutes.
“In principle, the method holds great promise to replace the cumbersome melatonin assay,” said Brown. “In practice, however, the method is still in its infancy.” The method has still limited the accuracy of liquid chromatography-mass spectrometry, for example, and more work is required to verify this proof of concept result.
But Ueda hopes he can move forward and scale up the study to track the metabolites of thousands of participants and build a comprehensive metabolite timetable. Such a massive dataset could reduce body clock estimation to a single sample per patient, and may help make the practice common in clinical settings. “My small dream is that internal body time is going to be one of the ways for your health to be checked,” he said.
T. Kasukawa et al., “Human blood metabolite timetable indicates internal body time,” Proceedings of the National Academy of Sciencesdoi: 10.1073/pnas.1207768109, 2012.
Posted by
Robert Karl Stonjek

Thursday, April 5, 2012

First Bedside Genetic Test Could Prevent Heart Complications



A genotyping test from a Canadian biotech company enables timely personalized drug treatment.
  • WEDNESDAY,
For some cardiac patients, recovery from a common heart procedure can be complicated by a single gene responsible for drug processing. The risk could be lowered with the first bedside genetic test of its kind. The test shows promise for quickly and easily identifying patients who need a different medication.
Quick test: This shoebox-sized device from Spartan Bioscience supports the first bedside genetic test.
Spartan Bioscience
After a patient receives a heart stent—a small scaffold that props open an artery—his or her doctor will prescribe a blood thinner to prevent platelets from building up inside the device. However, for some 70 percent of patients with Asian ancestry and 30 percent of patients with African or European ancestry, a single genetic variant will prevent one of the most commonly prescribed blood thinners from working. Alternatives exist, but they are more expensive, so hospitals could use an easy way to identify who does and does not need the more expensive drug.
Canada's Spartan Bioscience has developed a near "plug-and-play" genotyping device that allows nurses and others to quickly screen patients at the bedside, perhaps while they are undergoing the stent placement procedure. Users take a DNA sample from a patient's cheek with a specialized swab, add the sample to a disposable tube, and then place the tube and sample in a proprietary shoebox-sized machine and hit a button. Shortly thereafter, the user receives a printout of the patient's genetic status for the drug-processing variant. The whole procedure takes about an hour. Most clinicians currently have to wait several days for similar information to come from off-site genetics testing companies.
"For six years we've been plugging away at this, and we finally broke through about a year and a half ago," says Spartan Bioscience founder Paul Lem. He says the simple test came to life with innovations at every step—from the special swab that collects the right amount of DNA, to the chemicals in the disposable reaction tube, to the software that automates the DNA reading—and a team with diverse backgrounds including his in medicine and molecular biology and others' in optical hardware.

Lem has kept an eye on other companies trying to create a bedside genetic test, some going after the same variant, and calculates that over $1 billion in capital has been spent over the last five years in this area.
The University of Ottawa Heart Instituteresearchers conducted a proof-of-principle trial for the device and found that the bedside test is effective at quickly identifying carriers of the drug-processing variant and can be performed by nurses with minimal training. The findings were published in The Lancetlast week.
"The stakes are pretty high" for the risks associated with the variant in the test, says Euan Ashley, a cardiologist with Stanford's Center for Inherited Cardiovascular Disease. Patients who receive a stent implant after a heart attack or as a preventive measure are at risk for serious adverse events if their bodies cannot process a commonly prescribed anti-platelet drug into its active form. "There's a startling number of people who carry the variant, which leaves them at risk," says Ashley. "Being able to get an answer within an hour or two—when you are thinking of a patient's heart—is a pretty compelling case for [testing for it]."
Ashley notes that there may come a day when a patient's entire genome could be sequenced at the bedside, which may encourage a different model for bedside genotyping. "But we aren't there yet," he says. Genome-sequencing technologies capable of clinical diagnoses currently require days to identify all the base pairs in a human genome. "Sometimes, speed is of the essence," says Ashley. The technology is a good example of a real opportunity to do actual personalized medicine in real time, he says.
Spartan Bioscience got regulatory approval for the test in the European Union in December 2010, and hopes to have approval in the United States by the end of this year. The company gives away the devices for free, and charges $200 per test.
Spartan Bioscience is also looking for other applications for the technology, says Lem, from infectious diseases like MRSA, an antibiotic resistant strain of staph infections, to pharmacogenetic markers such as a hereditary resistance to standard hepatitis C treatment.
"Doctors from around the world have been pinging us with all the applications they've been saving up to the day when a bedside DNA test is finally available," says Lem.

Thursday, March 15, 2012

Hopes rise for viral disease victims



AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH   



Recent breakthroughs in Chikungunya research spearheaded by scientists at A*STAR’s Singapore Immunology Network (SIgN) have made great strides in the battle against the infectious disease. Working in close collaborations with Singapore clinician-scientists and international researchers, Dr Lisa Ng, Principal Investigator of the Chikungunya research group at SIgN, led the team to discover a direct biomarker which serves as an early and accurate prognosis of patients who have a higher risk of the more severe form of Chikungunya fever (CHIKF). This means that doctors can now quickly and accurately identify patients at risk, facilitating a more targetted treatment and clinical care at the onset of the disease. 

Chikungunya fever, caused by the Chikungunya virus (CHIKV)1, is a mosquito-borne, infectious disease endemic to Southeast Asia and Africa. Since its re-emergence in 2005, CHIKV infection has spread to nearly 20 countries to infect millions2. Singapore, for instance, was hit twice by Chikungunya fever outbreaks in January and August 2008. 

CHIKV infection is characterised by an abrupt onset of fever frequently accompanied by severe muscle and joint pains. Though most patients recover fully within a week, in severe cases, the joint pains may persist for months, or even years. For individuals with a weak immune system, the disease can result in death. With no clinically-approved vaccine or treatment for Chikungunya fever, it remains a worrying public health problem. 

To devise strategies to stop CHIKV transmission, Dr Ng’s team collaborated with Professor Leo Yee Sin and Dr Angela Chow, clinician-scientists from the Communicable Disease Centre (CDC) at Tan Tock Seng Hospital, to study how the human body responds to CHIKV infection. The team conducted a comprehensive study on the antibody response against CHIKV in patients. They discovered that patients who respond to the disease at the onset with high levels of Immunoglobulin G3 (IgG3), a naturally-acquired antibody, are protected from the more severe form of Chikungunya fever, characterised by persistent joint pains. On the other hand, patients with a delayed IgG3 response generally have less acute symptoms at the start, but are more susceptible to chronic debilitating joint pains at later stage of the disease. Hence, the IgG3 antibodies serve as a specific biomarker of patients with increased risk of the severe form of the disease. 

Collaborating with computational experts from A*STAR’s Institute for Infocomm Research (I2R), Dr Ng’s team also uncovered that a very small defined segment of the Chikungunya viral protein, named “E2EP3”, was able to induce the natural IgG3 protective response in preclinical models. They found that mice vaccinated with the E2EP3 peptides were protected against CHIKV with significant reduction in viral counts and joint inflammation. This finding raises hope for a new effective Chikungunya vaccine that can offer protection against Chikungunya virus in the event of an outbreak.

Dr Ng said, “Long-term treatment required for the chronic joint pain in Chikungunya-infected patients places social and economic burden for both patients and the public healthcare system. We are excited that the mechanistic insights gained through our collaborative research with the local hospitals and international research partners have led to discovery of ‘new weapons’ to tackle Chikungunya more effectively.”

Scientific Director of SIgN, Professor Paola Castagnoli said, “With increasing threat of Chikungunya virus infection, particularly in Asia and the Pacific region, this significant breakthrough is a step forward in enhancing our pandemic preparedness against the infectious disease. This is a testament to the successful collaborations between research scientists and clinicians in translating scientific discoveries into impactful healthcare solutions for the benefit of Singapore and beyond.”
1CHIKV, an alphavirus that is transmitted by infected Aedes mosquitoes, was first isolated in 1953 in Tanzania from infected patients who often developed a contorted posture owing to debilitating joint pains. The name Chikungunya means ‘that which bends up’ in the Makonde language of Southern Africa.
2http://www.cdc.gov/ncidod/dvbid/chikungunya/ and http://www.promedmail.org/
Editor's Note: Original news release can be found here.

Friday, January 27, 2012

Researchers develop gene therapy that could correct a common form of blindness



 
by Biomechanism 

A new gene therapy method developed by University of Florida researchers has the potential to treat a common form of blindness that strikes both youngsters and adults.
The technique works by replacing a malfunctioning gene in the eye with a normal working copy that supplies a protein necessary for light-sensitive cells in the eye to function. The findings are published in the Proceedings of the National Academy of Sciences online.
Several complex and costly steps remain before the gene therapy technique can be used in humans, but once at that stage, it has great potential to change lives.

“Imagine that you can’t see or can just barely see, and that could be changed to function at some levels so that you could read, navigate, maybe even drive — it would change your life considerably,” said study co-author William W. Hauswirth, Ph.D., the Rybaczki-Bullard professor of ophthalmology in the UF College of Medicineand a professor and eminent scholar in department of molecular genetics and microbiology and the UF Genetics Institute. “Providing the gene that’s missing is one of the ultimate ways of treating disease and restoring significant visual function.”
The researchers tackled a condition called X-linked retinitis pigmentosa, a genetic defect that is passed from mothers to sons. Girls carry the trait, but do not have the kind of vision loss seen among boys. About 100,000 people in the U.S. have a form of retinitis pigmentosa, which is characterized by initial loss of peripheral vision and night vision, which eventually progresses to tunnel vision, then blindness. In some cases, loss of sight coincides with the appearance of dark-colored areas on the usually orange-colored retina.
The UF researchers previously had success pioneering the use of gene therapy in clinical trials to reverse a form of blindness known as Leber’s congenital amaurosis. About 5 percent of people who have retinitis pigmentosa have this form, which affects the eye’s inner lining.
“That was a great advance, which showed that gene therapy is safe and lasts for years in humans, but this new study has the potential for a bigger impact, because it is treating a form of the disease that affects many more people,” said John G. Flannery, Ph.D., a professor of neurobiology at the University of California, Berkeley who is an expert in the design of viruses for delivering replacement genes. Flannery was not involved in the current study.
The X-linked form of retinitis pigmentosa addressed in the new study is the most common, and is caused by degeneration of light-sensitive cells in the eyes known as photoreceptor cells. It starts early in life, so though affected children are often born seeing, they gradually lose their vision.
“These children often go blind in the second decade of life, which is a very crucial period,” said co-author Alfred S. Lewin, Ph.D., a professor in the UF College of Medicine department of molecular genetics and microbiology and a member of the UFGenetics Institute. “This is a compelling reason to try to develop a therapy, because this disease hinders people’s ability to fully experience their world.”
Both Lewin and Hauswirth are members of UF’s Powell Gene Therapy Center.
The UF researchers and colleagues at the University of Pennsylvania performed the technically challenging task of cloning a working copy of the affected gene into a virus that served as a delivery vehicle to transport it to the appropriate part of the eye. They also cloned a genetic “switch” that would turn on the gene once it was in place, so it could start producing a protein needed for the damaged eye cells to function.

A new gene therapy method developed by University of Florida researchers, William W. Hauswirth, Ph.D. and Alfred S. Lewin, Ph.D., has the potential to reverse a common form of blindness that strikes young children.
After laboratory tests proved successful, the researchers expanded their NIH-funded studies and were able to cure animals in which X-linked retinitis pigmentosa occurs naturally. The injected genes made their way only to the spot where they were needed, and not to any other places in the body. The study gave a good approximation of how the gene therapy might work in humans.
“The results are encouraging and the rescue of the damaged photoreceptor cells is quite convincing,” said Flannery, who is on the scientific advisory board of the Foundation Fighting Blindness, which provided some funding for the study. “Since this type of study is often the step before applying a treatment to human patients, showing that it works is critical.”
The researchers plan to repeat their studies on a larger scale over a longer term, and make a version of the virus that proves to be safe in humans. Once that is achieved, a pharmaceutical grade of the virus would have to be produced and tested before moving into clinical trials in humans. The researchers will be able to use much of the technology they have already developed and used successfully to restore vision.
______________
Courtesy University of Florida

Thursday, January 26, 2012

Device Brings $1,000 Genome Within Reach


Sequence machine: The Ion Proton Sequencer chip.
Life Technologies



Ion Torrent introduced its new tabletop sequencer at CES this week.

  • BY ERICA WESTLY
Thanks to advances in chemistry and software, researchers can soon sequence a human genome for $1,000 in a day.
Back in July, Jonathan Rothberg, CEO of the Connecticut-based biotech company Ion Torrent, predicted that by 2013 his company would develop a chip that could sequence an entire human genome.
This week, the company surpassed that prediction with a new tabletop sequencer called the Ion Proton. The company introduced the device at the Consumer Electronics Show in Las Vegas on Tuesday, although the sequencer is only available to researchers at this point.
At $149,000, the new machine is about three times the price of the Personal Genome Machine, the sequencer that the company debuted about a year ago. But the DNA-reading chip inside it is 1,000 times more powerful, according to Rothberg, allowing the device to sequence an entire human genome in a day for $1,000—a price the biotech industry has been working toward for years because it would bring the cost down to the level of a medical test.
"The technology got better faster than we ever imagined," Rothberg says. "We made a lot of progress on the chemistry and software, then developed a new series of chips from a new foundry." The result is a technology progression that has moved faster than Moore's law, which predicts that microchips will double in power roughly every two years.
Ion Torrent's semiconductor-based approach for sequencing DNA is unique. Currently, optics-based sequencers, primarily from Illumina, a San Diego-based company, dominate the human genomics field. But, while the optics-based sequencers are generally considered more accurate, these machines cost upwards of $500,000, putting them out of reach for most clinicians. Meanwhile, at Ion Torrent's price, "you can imagine one in every doctor's office," says Richard Gibbs, director of Baylor College of Medicine's human genome sequencing center in Houston, which will be among the first research centers to receive a Proton sequencer.
The new Ion Torrent sequencer will also allow researchers to buy a chip that sequences only exons, the regions of the genome that encode proteins. Exons only account for about 5 percent of the human genome, according to the National Human Genome Research Institute, but they are where most disease-causing mutations occur, making so-called exome sequencing a faster and potentially cheaper option for many researchers. Although it's the same price as the genome chip, the Ion Torrent exome chip can sequence two exomes at a time, bringing the per-sequence cost down to $500.
"Some researchers want to sequence single genes, others want to do exomes, and others—for example, cancer researchers—will want to sequence whole genomes, so all three are going to coexist," says Rothberg. "It's about finding the right tool for the problem."
Whether Ion Torrent's new technology will be enough to make it the dominant supplier of these tools remains to be seen. A day after the company debuted the Proton sequencer, Illumina also announced that it, too, had reached the $1,000 genome milestone.
"It's a volatile field, and there's no sentiment to keep researchers from switching to new technologies," says Gibbs. Still, Ion Torrent clearly has the price advantage. For researchers who already have Illumina's latest sequencer, the price to upgrade will be only $50,000, but the retail price will be $740,000, which will likely scare off most newcomers.

Startup Makes 'Wireless Router for the Brain'



Mind control: This optogenetics system makes it possible to control brain cells with light in freely moving animals. The prototype plugs in to an implant in an animal's brain.
Kendall Research



Kendall Research's devices could make optogenetics research much more practical.

  • BY COURTNEY HUMPHRIES
Optogenetics has been hailed as a breakthrough in biomedical science—it promises to use light to precisely control cells in the brain to manipulate behavior, model disease processes, or even someday to deliver treatments.
But so far, optogenetic studies have been hampered by physical constraints. The technology requires expensive, bulky lasers for light sources, and a fiber-optic cable attached to an animal—an encumbrance that makes it difficult to study how manipulating cells affects an animal's normal behavior.
Now Kendall Research, a startup in Cambridge, Massachusetts, is trying to free optogenetics from these burdens. It has developed several prototype devices that are small and light and powered wirelessly. The devices would allow mice and other small animals to move freely. The company is also developing systems to control experiments automatically and remotely, making it possible to use the technique for high-throughput studies.
Christian Wentz, the company's founder, began the work while a student in Ed Boyden's lab at MIT. He was studying ways to make optogenetics more useful for research on how the brain affects behavior. Optogenetics relies on genetically altering certain cells to make them responsive to light, and then selectively stimulating them with a laser to either turn the cells on or off. Instead of a laser light source, Kendall Research uses creatively packaged LEDs and laser diodes, which are incorporated into a small head-borne device that plugs into an implant in the animal's brain.
The device, which weighs only three grams, is powered wirelessly by supercapacitors stationed below the animal's cage or testing area. Such supercapacitors are ideal for applications that need occasional bursts of power rather than a continuous source. The setup also includes a wirelessly connected controller that plugs into a computer through a USB. "It's essentially a wireless router for the brain," says Wentz.
The wireless capabilities allow researchers to control the optogenetics equipment remotely, or even schedule experiments in advance.
Casey Halpern, a neurosurgeon at the University of Pennsylvania and one of several researchers beta-testing the device, says the physical impediments of current optogenetics techniques are tremendous. "You almost can't do any behavioral experiment in a meaningful way," he says.
Halpern, for instance, studies feeding behavior, and would like to understand how activating or inhibiting specific groups of neurons change the way mice eat. The ability to test that question right in the animal's cage without a human in the room makes it more likely the animal will behave normally.
Wentz says that while the cost of the initial setup is comparable to a single laser system, it can be scaled up far more cheaply. This, coupled with the ability to remotely control experiments, would make it easier to conduct optogenetics experiments in a high-throughput fashion.
Kendall Research plans to make it possible to collect data from the brain through the device. The data could then be wirelessly transmitted to a computer. Sanjay Magavi, a research scientist at Vertex Pharmaceuticals, says while "it isn't yet clear how this will be used in industry," there's increasing interest in using optogenetics in animals to develop more sophisticated models of disease for preclinical drug testing.