Thursday, July 28, 2011

Advanced Reactor Gets Closer to Reality


Dream plant: A recent design for a nuclear reactor known as a traveling wave reactor looks similar to some conventional nuclear designs, but the way it operates is very different.
Credit: Terrapower

ENERGY


Terrapower is pushing ahead with a reactor design that uses a nearly inexhaustible fuel source.
  • BY KEVIN BULLIS
Terrapower, a startup funded in part by Nathan Myhrvold and Bill Gates, is moving closer to building a new type of nuclear reactor called a traveling wave reactor that runs on an abundant form of uranium. The company sees it as a possible alternative to fusion reactors, which are also valued for their potential to produce power from a nearly inexhaustible source of fuel.
Work on Terrapower's reactor design began in 2006. Since then, the company has changed its original design to make the reactor look more like a conventional one. The changes would make the reactor easier to engineer and build. The company has also calculated precise dimensions and performance parameters for the reactor. Terrapower expects to begin construction of a 100-megawatt demonstration plant in 2016 and start it up in 2020. It's working with a consortium of national labs, universities, and corporations to overcome the primary technical challenge of the new reactor: developing new materials that can withstand use in the reactor core for decades at a time. It has yet to secure a site for an experimental plant—or the funding to build it.
The reactor is designed to be safer than conventional nuclear reactors because it doesn't require electricity to run cooling systems to prevent a meltdown. But the new reactor doesn't solve what is probably the biggest problem facing nuclear power today: the high cost of building them. John Gilleland, Terrapower's CEO, says the company expects the reactors to cost about as much to build as conventional ones, "but the jury is still not in on that."
Conventional reactors generate heat and electricity as a result of the fission of a rare form of uranium—uranium 235. In a traveling wave reactor, a small amount of uranium 235 is used to start up the reactor. The neutrons the reactor produces then convert the far more abundant uranium 238 into plutonium 239, a fissile material that can generate the heat needed for nuclear power. Uranium 238 is readily available in part because it's a waste product of the enrichment processes used to make conventional nuclear fuel. It may also be affordable in the future to extract uranium 238 from seawater if demand for nuclear fuel is high. Terrapower says there's enough of this fuel to supply the world with power for a million years, even if everyone were to use as much power as people in the United States do.
Advertisement
In the original Terrapower design, the reactor core was filled with a large collection of uranium 238. The process of converting it starts at one end, producing plutonium that's immediately split to generate heat and convert more uranium to plutonium. The reaction moves from one end to the other—in a "traveling wave"—until no more reactions can occur.
In the new design, the reactions all take place near the reactor's center instead of starting at one end and moving to the other. To start, uranium 235 fuel rods are arranged in the center of the reactor. Surrounding these rods are ones made up of uranium 238. As the nuclear reactions proceed, the uranium 238 rods closest to the core are the first to be converted into plutonium, which is then used up in fission reactions that produce yet more plutonium in nearby fuel rods. As the innermost fuel rods are used up, they're taken out of the center using a remote-controlled mechanical device and moved to the periphery of the reactor. The remaining uranium 238 rods—including those that were close enough to the center that some of the uranium has been converted to plutonium—are then shuffled toward the center to take the place of the spent fuel.

No comments:

Post a Comment