Search This Blog

Wednesday, March 1, 2017

Proper Chemical Waste Disposal

Laboratory Chemical Waste Management Procedures

INTRODUCTION

Proper chemical management is necessary to protect the health and safety of the University and surrounding communities and the environment. There are federal and state regulations that require all generators of chemical waste receive training and follow proper waste management and disposal procedures. These regulations have severe monetary and civil penalties associated with them. Between 1990 and 2004, over twelve million dollars in fines have been levied against University and Colleges for hazardous waste and other environmental violations, leading the EPA to question waste management at educational institutions.

DEFINITION OF CHEMICAL WASTE, Step 1

Chemical waste is defined by the United States Environmental Protection Agency and by the Delaware Department of Natural Resources and Environmental Control. Definitions, management practices and compliance are outlined in 40 Code of Federal Regulations and the Delaware Rules Governing Hazardous Waste. All policies and practices developed by the University of Delaware are designed to meet or exceed these regulations and assure compliance.
University Policy 7-18 states that all University of Delaware personnel must manage all chemical and hazardous waste in compliance with these federal and state regulations and in accordance with procedures set up by the Department of Environmental Health & Safety.
Chemical waste is a broad term and encompasses many types of materials. Consult your Material Safety Data Sheet (MSDS), Product Data Sheet or Label for a list of constituents. These sources will tell you if you have a chemical waste that needs special disposal. To reduce its long-term liability, the University is proactive in managing all of its chemical waste in an environmentally sound manner. If there are any questions on whether a material must be managed through the chemical waste management program,
  • Unused and surplus reagent grade chemicals
  • Intermediates and by-products generated from research & educational experiments
  • Batteries
  • Anything contaminated by chemicals
  • Used oil of all types
  • Spent solvents - including water based
  • Mercury containing items
  • Photographic film processing solutions and chemicals
  • Pesticides
  • Non-returnable gas cylinders
  • Non-empty aerosol cans
  • Chemically contaminated sharps
  • Finely divided powders
  • Contaminated syringes, needles, GC syringes, razor blades, pasteur pipettes, pipette tips
  • Equipment and apparatus containing hazardous waste
  • Computer/electronic equipment
  • Toner cartridges
  • Ethylene glycol
  • Paints - both oil and latex
  • Fluorescent light bulbs
  • Light ballasts
  • Preserved specimens
  • Custodial and industrial cleaners
  • Uncured Resins(Phenolic, Epoxy, Styrene, etc....)
  • Dye and glazes
  • Degreasing solvents
  • Brake/Transmission/Power Steering Fluids

SELECTING A CONTAINER, Step 2

Liquid Chemical Waste
Once it is determined that chemical waste will be generated, a container must be selected prior to waste generation. For bulk solvent and aqueous liquid waste streams use a Low Density Polyethylene Nalgene container. These containers will be returned within a week to the lab and are available from most laboratory supply companies and the campus storerooms. Nalgene containers are compatible with most chemical wastes, but there are a few waste streams that should not be accumulated in these containers.
DO Not Use glass, plastic-coated glass or other re-used reagent chemical bottles to store or accumulate bulk liquid chemical waste.
Examples of chemical that should not be stored in Nalgene containers:
  • Amyl Chloride
  • Bromine
  • Butyric Acid
  • Carbon disulfide
  • Nitrobenzene
  • Sulfur Dioxide
  • Thionyl Chloride
  • Vinylidene Chloride
Certain types of Nalgene containers work best for DEHS' operations. Please try to purchase containers that meet the following requirements:
  • Low density polyethylene
  • Either a 53B or 83B screw cap
  • Containers with a large handle
  • Capacity no larger than 5 gallons
For bulk corrosive liquid waste streams, use the Justrite Safety Containers for Waste Disposal. These containers are specially designed for corrosive chemical waste and vent under emergency conditions. DO NOT store or accumulate bulk liquid corrosive chemical waste in any other container. Go to Liquid Corrosive Chemical Waste Management for more information on managing corrosive waste streams.
Do Not use containers that are old, dented, damaged, leaking or cracked. The container must be able to be capped, sealed or closed. The container must be compatible with the waste streams that will be placed in it. For example, do not use a metal container to store acids, do not use a glass container to store hydrofluoric acid, do not use glass or metal containers to store organic peroxides and do not use metal containers to store picric acid and solutions of picric acid. Do not use containers that can be confused with consumer commodities like soda bottles or milk jugs. Do not use metal containers for flammable liquid waste, unless proper bonding and grounding precautions are taken.
Laboratory Clean Out of Regent Chemicals
All laboratories should, based on the hazards they pose, inspect all of their reagent chemicals. Look for chemicals that are no longer needed, old and out of date or unusable. Try to redistribute unneeded chemicals around the department or building. If no one else needs the chemical or if they are out of date or unusable, then package them as follows for disposal through DEHS:
  • Package by hazard class in sturdy cardboard boxes. Go to Chemical Storage for guidance on packaging by hazard class.
  • Use sufficient packing material to prevent container damage en route.
  • Place a completed chemical waste label and packing slip on the outside of the box.
Sample Vials - Sealed 15 ml or less
Some laboratories generate a number of sealed sample vials. If the laboratory does not want to reuse the glassware or plasticware and does not want to empty the contents into a liquid chemical waste container, the following procedures must be used:
  • Obtain a clean 5-gallon polyethylene pail with lid.
  • Line the pail with a heavy-duty plastic bag.
  • Place a chemical waste label on the outside of the pail.
  • Place only compatible material in pail. Go to Chemical Storage for guidance on compatibility.
  • Place the lid on the pail.
  • When full, tightly seal bag with tape or bag closure tie.
Solid Waste Streams
Solid waste includes any laboratory material that has come in contact with a chemical or is potentially contaminated with a chemical. Examples include gloves, bench-top paper, weighing boats and papers, paper towels, clean up material and permanently contaminated glassware and plasticware. Go to Laboratory Solid Waste Disposal Procedures for a flow chart that helps decide if a material requires management as chemical waste or if it can be placed in the normal trash. Use the following procedures to manage solid chemical waste:
  • Use five-gallon poly pails, cardboard boxes, or other sturdy containers.
  • All containers must have lids.
  • Apply a completed chemical waste label on the outside of the container or in vinyl tags attached to the containers.
  • Line the container with a 7-mil polyethylene bag or three standard trash bags.
  • All bags must be sealed unless laboratory personnel are actively adding waste. Seal the bag with a bag closure tie or a large binder clip.
  • When the container is full, seal the bag with tape. If the container is in a cardboard box, secure the box with tape as well.
  • It is important not to overload containers. Full boxes should not weigh more than 40 pounds. Do not use overly large boxes. Only fill boxes two-thirds full if they contain broken glass.
Chemically Contaminated Sharps
Anything that is capable of cutting or puncturing must be managed in a sharps container. Examples of sharps include needles, syringes, razor blades, slides, scalpels, pipettes, broken plastic or glassware, micropipettes and pipette tips. Sharps containers are available free of charge from DEHS. Go to Sharp and Piercing Object Disposal for more information about sharps management. If a sharp is chemically contaminated, simply place it in a sharps container that is labeled with a properly filled out Orange Chemical Waste Label.
Empty Chemical Containers
Empty chemical containers are still hazardous to the University personnel and the environment until they are properly managed. Go to Glass Only Disposal/Empty Chemical Container Disposal Procedures for complete information on empty container management. Below is a summary of the steps required to make empty chemical containers safe for disposal:
  • Triple rinse with copious amounts of water. Collect the first rinse as chemical waste. Rinse two and three can go down the sanitary sewer.
  • Place a label over the original container label or deface the label.
  • Do not replace the cap on the container.
  • Place empty/triple rinsed containers in a glass only box, recycling container or directly into the dumpster.
Clean, Uncontaminated Broken Glassware
In an effort to minimize the amount of chemical waste generated on campus, clean, uncontaminated glassware and plasticware should not be managed as waste. Unwanted clean non-broken glassware and plasticware can be packaged up by the laboratory personnel and taken to the dumpster or recycling area. Broken glassware and plasticware creates a potential hazard so special procedures are needed:
  • Purchase a glass only box from a campus storeroom or a laboratory supply company, or reuse a heavy corrugated cardboard box lined with a plastic liner.
  • Construct the box as per directions.
  • Tape the bottom.
  • When the container is 3/4's full, seal and take to the dumpster yourself. Remember that you must wear personal protective equipment (PPE) while handling these boxes. Minimum PPE includes leather work gloves and safety glasses. Custodial Services will not handle broken laboratory glassware and plasticware.
Gas Cylinders
The disposal of gas cylinders is extremely expensive. Unknown gas cylinders may cost in excess of $1,000 to identify and properly manage. Always check to make sure that all labels on gas cylinders are in good condition and legible. Contact the cylinder supplier and arrange a return if possible. It is best to use cylinders that will be returned. If lecture cylinders are required for research, use cylinders supplied by Aldrich, Matheson Tri Gas or Messer Gas. Disposal of Aldrich cylinders are inexpensive and Matheson and Messer Gas have a lecture bottle return program.

Recycling and Laboratory Wastes
Certain laboratory materials can be recycled while others cannot. Go to Campus Computer, Electronic Equipment and Office Supplies Recycling for complete information on recycling. Below is information specific for laboratories:
Laboratory materials that can be recycled:
  • Brown glass
  • Clear glass
  • Metal cans
  • Computer and electronic equipment
Laboratory materials that cannot be recycled:
  • Any glass bottles that are plastic coated
  • Pyrex
  • Glass only boxes

LABELING CHEMICAL WASTE, Step 3

After you have determined what waste you are going to generate and have obtained the appropriate containers, you must properly fill out a chemical waste label and attach it to the containers. Chemical waste labels are available from DEHS, free of charge. There are directions on the back side of the label and labels must be applied on all chemical waste containers as soon as waste is added. These labels are designed to meet the regulatory requirements, therefore, every piece of information on the label is critical and must be completed.
How to Label:
  • The generator is the person who is filling out the waste label, not the lab group or Principal Investigator (PI) unless the PI is filling out the waste label.
  • Date the label with the date that the waste is first added.
  • Fill in building, room number and telephone number where the person who is filling out the waste label can be reached.
  • Circle the appropriate waste steam(s) or write it in.
  • List each waste constituent down to 1%; heavy metals must be listed down to the parts per million range. Label contents must add up to 100%. Volumes are acceptable.
  • Use only common chemical names or IUPAC nomenclature when listing the chemical constituents on the label.
  • Do not use:
    • Abbreviations
    • Chemical symbols
    • Trade names
  • Check the appropriate boxes for the waste stream.
  • If this waste is being moved to a Central Accumulation Area such as the Brown Solvent Shed, Colburn Solvent Shed or the McKinly Waste Storage Area, fill in the date that it is moved on the line at the bottom of the waste label.

ADDING WASTE TO A CONTAINER, Step 4

Waste can be added only after you choose the proper container and it is labeled. The minimum personal protective equipment (PPE) may be dictated in the Chemical Hygiene Plan. If not, all personal working with chemical waste must wear the following:
  • Safety glasses
  • Splash goggles if working with liquid waste
  • Lab coat
  • Gloves specific for the compounds in use
Procedure for liquid chemical waste management:
  • Perform liquid chemical waste management in a fume hood. Mixing of liquid waste may generate toxic or corrosive aerosols.
  • Check the container label to assure that waste is being added to the correct container.
  • The container must be in secondary containment, i.e. large plastic bin or bucket.
  • Uncap the container.
  • Use a funnel sufficient for the size of the container and volume of waste being added.
  • Slowly add the waste, watching for any unintended reactions. If you observe a reaction, immediately stop adding the waste, close the fume hood sash and contact DEHS.
  • After the waste has been added, remove the funnel and seal the container with the cap.
  • Another option for liquid waste management is to use a specially designed waste funnel called ECO-Funnel. Go to Safety Ecological Funnels for more information.
Procedures for solid waste management:
  • Go to Laboratory Solid Waste Disposal Set-Up and Laboratory Solid Waste Disposal Procedures for information and guidance on how to set up your solid chemical waste management program in your lab.
  • Obtain and label a proper container as described above.
  • Open the lid to the container and unseal the bag.
  • Add the waste.
  • Seal the bag with a bag closure tie or large binder clip.
  • Reseal the lid.

STORING YOUR WASTE, Step 5

Proper storage of chemical waste is extremely important. Explosions have occurred on campus that are attributed to improper storage of chemical waste. If you improperly label a container, other laboratory personnel unknowingly may add incompatible material to the container. For example, if an organic solvent solution is added to a container that is not labeled or labeled as an aqueous inorganic acid, and a fellow researcher may generate an inorganic nitric acid solution and add it to the container. Nitric acid and organic solvents are extremely incompatible and the container over a short period of time generates pressure and explodes. Go to Chemical Storage for guidance. Adhere to the following procedures on chemical waste storage to protect the health and safety of others, protect the University's facilities and to keep the University in compliance with all federal, state and local regulations:
  • Waste containers must remain closed or sealed at all times, except when waste is being added or removed from the container.
  • Liquid waste containers must be stored in secondary containment systems according to hazard class.
  • Store all bulk liquid waste containers in appropriate cabinets. DO NOT store bulk liquid chemical waste containers in fume hoods that have active experiments or reactions occurring.
    • Flammable Cabinets
    • Corrosive Cabinets
    • Under Fume Hood Cabinets
  • Do not allow excess accumulation of chemical waste to build up in your lab. Go to Hazardous Waste Definitionsfor more information on the limitations of waste storage.
  • Containers can only be filled to a maximum 90% full. Head space is needed for expansion and/or ease of dispensing.

INSPECTING YOUR WASTE ACCUMULATION AREAS, Step 6

All satellite chemical waste accumulation areas must be inspected on a weekly basis. This inspection does not have to be a formal inspection with documentation but laboratory personnel must inspect all chemical waste stored in their laboratories to assure the following:
  • There are no leaking containers of chemical waste.
  • All containers holding chemical waste are labeled with a completed orange chemical waste label.
  • All containers are sealed and closed. This includes waste containers holding solid chemical waste.
  • All liquid chemical wastes are stored in secondary containment bins.
  • Incompatible wastes are stored away from each other and in separate containment bins.
  • There is not an excessive accumulation of waste stored in the laboratory.Immediately correct any of the above if they are encountered during the course of the weekly inspection.

HOW TO HAVE CHEMICAL WASTE REMOVED, Step 7

Certain departments and buildings have a Central Accumulation Area (CAA) set up in close proximity to their building. Laboratories in McKinly, Wolf, Brown, Lammot DuPont, Drake Hall, Colburn and Spencer should take their waste to the CAA. Go to Chemical Waste Removal Process for complete information on the CAA's.
Once a chemical waste container is full, DEHS should be contacted to remove the container or it should be moved to the CAA. In addition, if a chemical waste container has been in a laboratory for more than a year, it should be removed.

Common Violations Found in Laboratories

DEHS routinely encounter a group of common problems and issues with chemical waste. These common problems are listed below with suggestions to prevent them from occurring. The EPA has fined Universities and Colleges for the problems listed below. Your support in eliminating these problems will greatly reduce the University's liability.
  • Unknown / Unlabeled chemical waste is very difficult and expensive to dispose of and poses an unnecessary risk to laboratory personnel as well as University personnel handling the waste. Unlabeled containers are a direct violation of the Federal and State hazardous waste regulations. Typically, DEHS covers the cost of all wastes generated by academic departments and programs. Departments generating unknown wastes may be charged for its disposal because of the extreme costs.
    • Prevention - Label all chemical waste with an orange chemical waste label. Update the constituents on the label every time waste is added. Inspect waste on a weekly basis to assure that containers are labeled and that the labels are in good condition. Inspect your chemical reagents to assure that the labels are still attached. Tape or replace as necessary.
  • Mixing or storage of incompatible chemicals may result in an explosion, fire or generation of toxic aerosols, vapor or fumes.
    • Prevention - Having an accurate, up-to-date waste label on each container will greatly reduce the possibility of mixing incompatible materials. Store incompatibles away from each other and in separate secondary containment bins.
  • Chemical containers that are left uncapped / open - This is a direct violation of Federal and State chemical waste and air permitting regulations and must not occur
    • Prevention - Seal all containers immediately after waste is added. Inspect accumulation areas to assure all containers are sealed. Purchase and use ECO-Funnels.
  • Laboratory personnel that are inadequately trained in the proper management of chemical waste - This is a direct violation of Federal and State chemical waste regulations. Additionally a lack of training places University Personnel, facilities and the environment at risk.
    • Prevention - Complete DEHS' online Chemical Waste training class. Go to Environmental Health & Safety Training Schedule to sign up for a live training session in the EHS Office .
  • Liquid containers stored outside of secondary containers - If container(s) fail, the contents may migrate and commingle with incompatible chemicals or migrate to floor or sink drains. This is a direct violation of the Federal and State chemical waste regulations.
    • Prevention - Store all liquid chemical waste in secondary containment.
  • Waste Containers Stored In and/or Near Sink Areas and Floor Drains - If containers leak the contents could discharge down the drain. If this occurs, it is a direct violation of the Federal and State chemical waste and safe drinking water regulations.
    • Prevention - Store all liquid chemical waste in secondary containment and away from all floor and sink drains.

Conclusion

Proper chemical waste management protects the health and safety of everyone and prevents or minimizes pollution. All generators of chemical waste should do their best to minimize the amounts or chemical waste they generate and recycle whenever possible.

The Deepest Uncertainty When a hypothesis is neither true nor false.

.

Cecile G. Tamura
Georg Cantor died in 1918 in a sanatorium in Halle, Germany. A pre-eminent mathematician, he had laid the foundation for the theory of infinite numbers in the 1870s. At the time, his ideas received hostile opposition from prominent mathematicians in Europe, chief among them Leopold Kronecker, once Cantor’s teacher. In his first known bout of depression, Cantor wrote 52 letters to the Swedish mathematician Gösta Mittag-Leffler, each of which mentioned Kronecker.
But it was not just rejection by Kronecker that pushed Cantor to depression; it was his inability to prove a particular mathematical conjecture he formulated in 1878, and was convinced was true, called the Continuum Hypothesis. But if he blamed himself, he did so needlessly. The debate over the conjecture is profoundly uncertain: in 1940 Kurt Gödel proved that the Continuum Hypothesis cannot be disproven (technically speaking, that the negation of the Hypothesis cannot be proven), and in 1963 Paul Cohen proved that it cannot be proven. Poor Cantor had chosen quite the mast to lash himself to.
How is it possible, though, for something to be provably neither provable nor disprovable? An exact answer would take many pages of definitions, lemmas, and proofs. But we can get a feeling for what this peculiar truth condition involves rather more quickly.
Cantor’s Continuum Hypothesis is a statement regarding sizes of infinity. To see how infinity can have more than one size, let’s first ask ourselves how the sizes of ordinary numbers are compared. Consider a collection of goats in a small forest. If there are six goats and six trees, and each goat is tethered to a different tree, then each goat and tree are uniquely paired. This pairing is called a “correspondence” between the goats and the trees. If, however, there are six goats and eight trees, we will not be able to set up such a correspondence: no matter how hard we try, there will be two trees that are goat-free.
Correspondences can be used to compare the sizes of much larger collections than six goats—including infinite collections. The rule is that, if a correspondence exists between two collections, then they have the same size. If not, then one must be bigger. For example, the collection of all natural numbers {1,2,3,4,…} contains the collection of all multiples of five {5,10,15,20,…}. At first glance, this seems to indicate that the collection of natural numbers is larger than the collection of multiples of five. But in fact they are equal in size: every natural number can be paired uniquely with a multiple of five such that no number in either collection remains unpaired. One such correspondence would involve the number 1 pairing with 5, 2 with 10, and so on.
If we repeat this exercise to compare “real” numbers (these include whole numbers, fractions, decimals, and irrational numbers) with natural numbers, we find that the collection of real numbers is larger. In other words, it can be proven that a correspondence cannot exist between the two collections.
The Continuum Hypothesis states that there is no infinite collection of real numbers larger than the collection of natural numbers, but smaller than the collection of all real numbers. Cantor was convinced, but could never quite prove it.
To see why, let’s begin by considering what a math proof consists of. Mathematical results are proven using axioms and logic. Axioms are statements about primitive mathematical concepts that are so intuitively evident that one does not question their validity. An example of an axiom is that, given any natural number (which is a primitive concept), there exists a larger natural number. This is self-evident, and not in serious doubt. Logic is then used to derive sophisticated results from axioms. Eventually, we are able to construct models, which are mathematical structures that satisfy a collection of axioms.
Crucially, any statement proven from axioms, through the use of logic, will be true when interpreted in any model that makes those axioms true.
It is a remarkable fact that all of mathematics can be derived using axioms related to the primitive concept of a collection (usually called a “set” in mathematics). The branch of mathematics that does this work is known as set theory. One can prove mathematical statements by first appropriately interpreting the statement in the language of sets (which can always be done), and then applying logic to the axioms of sets. Some set axioms include that we can gather together particular elements of one set to make a new set; and that there exists an infinite set.
Kurt Gödel described a model that satisfies the axioms of set theory, which does not allow for an infinite set to exist whose size is between the natural numbers and the real numbers. This prevented the Continuum Hypothesis from being disproven. Remarkably, some years later, Paul Cohen succeeded in finding another model of set theory that also satisfies set theory axioms, that does allow for such a set to exist. This prevented the Continuum Hypothesis from being proven.
Put another way: for there to be a proof of the Continuum Hypothesis, it would have to be true in all models of set theory, which it isn’t. Similarly, for the Hypothesis to be disproven, it would have to remain invalid in all models of set theory, which it also isn’t.
It remains possible that new, as yet unknown, axioms will show the Hypothesis to be true or false. For example, an axiom offering a new way to form sets from existing ones might give us the ability to create hitherto unknown sets that disprove the Hypothesis. There are many such axioms, generally known as “large cardinal axioms.” These axioms form an active branch of research in modern set theory, but no hard conclusions have been reached.
The uncertainty surrounding the Continuum Hypothesis is unique and important because it is nested deep within the structure of mathematics itself. This raises profound issues concerning the philosophy of science and the axiomatic method. Mathematics has been shown to be “unreasonably effective” in describing the universe. So it is natural to wonder whether the uncertainties inherent to mathematics translate into inherent uncertainties about the way the universe functions. Is there a fundamental capriciousness to the basic laws of the universe? Is it possible that there are different universes where mathematical facts are rendered differently? Until the Continuum Hypothesis is resolved, one might be tempted to conclude that there are.
https://en.wikipedia.org/wiki/Continuum_hypothesis
https://plato.stanford.edu/entries/continuum-hypothesis/
http://nautil.us/issue/2/Uncertainty/the-deepest-uncertainty
https://www.ias.edu/ideas/2011/kennedy-continuum-hypothesis
http://mathworld.wolfram.com/ContinuumHypothesis.html
https://plus.maths.org/cont…/…/issue47/features/elwes1/index
Image may contain: one or more people, text and outdoor

'S' என்ற எழுத்தில் ஆரம்பமாகும் பெயரைக் கொண்டவர்களைப் பற்றிய சுவாரஸ்யமான தகவல்கள் .

குறிப்பிட்ட சில ஆங்கில எழுத்துக்கள், ஒருவரின் வாழ்வில் தாக்கத்தை ஏற்படுத்தும். அதில் பெரும்பாலானோரது பெயர் குறிப்பிட்ட எழுத்துக்களில் ஆரம்பமாகும். அதிலும் "A, S, J" போன்றவை மிகவும் சக்தி வாய்ந்த எழுத்துக்களாக கருதப்படுகிறது. உங்களது பெயர், இவற்றில் 'S'-இல் ஆரம்பமானால், இக்கட்டுரை உங்களுக்கானது. எண் கணிதத்தின் படி, 'S' என்ற எழுத்து எண் ஒன்றிற்கு இணையானது. இத்தகையவர்கள் தலைவர்களாக மற்றும் அனைத்து செயல்களிலும் மிகச்சிறப்பாக செயல்படுபவராகவும் இருப்பர். இதுப்போன்று 'S' என்ற எழுத்தில் ஆரம்பமாகும் பெயரைக் கொண்டவர்களைப் பற்றிய ஏராளமான சுவாரஸ்யமான தகவல்கள் தான் கீழே கொடுக்கப்பட்டுள்ளது.
விசுவாசமானவர்கள் இந்த எழுத்தில் ஆரம்பமாகும் பெயரைக் கொண்டவர்கள் மிகவும் விசுவாசமானவர்களாக கருதப்படுவர். இத்தகையவர்களுக்கு மிகவும் ரொமான்டிக்காக பேசத் தெரியாது. வார்த்தைகளால் அன்பை வெளிக்காட்டுவதை விட, செயலில் காட்டவே விரும்புவர்.
இரக்கமுடையவர் 'S' என்ற எழுத்தில் ஆரம்பமாகும் பெயரைக் கொண்டவர்கள் அன்பானவர்களாகவும், அதிக இரக்க குணமுடையவர்களாகவும் இருப்பர். இவர்கள் முன்பு யாரேனும் பிரச்சனையில் இருந்தால், அவர்களுக்கு உதவி செய்து விடுவிக்க பெரிதும் முயற்சி செய்வர்.
நம்பத் தகுந்தவர் இவர்கள் நேர்மையானவர்கள் மற்றும் நம்பத் தகுந்தவர்கள். இவர்களுக்கு கோபம் வந்தாலோ அல்லது மன வருத்தம் அடைந்தாலோ, மிகுதியாக உணர்ச்சிவசப்படுவார்கள். சில நேரங்களில் இவர்களைப் புரிந்து கொள்வது என்பது கடினமாக இருக்கும்.
உணர்வுகளை மறைப்பார்கள் இந்த எழுத்தில் பெயரைக் கொண்டவர்கள், தங்களது உணர்வுகளை மற்றவர்களுடன் பகிர்ந்து கொள்ள விரும்பமாட்டார்கள். இதனாலேயே இவர்களைப் புரிந்து கொள்வது கஷ்டமாக இருக்கும். இந்த குணத்தாலேயே, இவர்கள் அதிக மன இறுக்கத்திற்கு உள்ளாவார்கள்.
மிகவும் கவர்ச்சிகரமானவர்கள் இந்த எழுத்தில் ஆரம்பமாகும் பெயரைக் கொண்டவர்களது அகம் மற்றும் புறம் அழகாக இருக்கும். இவர்கள் மற்றவர்களுக்காக அதிகம் சந்தோஷமும் கொள்வார்கள், துன்பமும் கொள்வார்கள். இவர்களது கவர்ச்சிகரமான பேச்சு மற்றும் தோற்றத்தாலேயே, பலருக்கும் இவர்களுடன் பழகப் பிடிக்கும்.
வெற்றிகரமான தொழில் இத்தகையவர்கள் பணத்திற்கு அதிக முக்கியத்துவம் கொடுப்பார்கள். இதனால் இவர்கள் வெற்றிகரமான தொழிலதிபராகவோ, அரசியல்வாதியாகவோ இருப்பர்.
இருப்பர் ஒரு லட்சியத்துடன் வாழ்க்கையை வாழ்பவர்களாக இருந்தாலும், உறவுகளுக்கு அதிக முக்கியத்துவம் கொடுப்பர். தனிப்பட்ட அல்லது தொழில்முறை உறவுகளாகட்டும், அனைவரிடமும் உண்மையாக இருப்பர்.

Read more at: http://tamil.boldsky.com/insync/pulse/2017/does-your-name-start-with-the-letter-s/slider-pf84479-014504.html

Tuesday, February 28, 2017

உங்கள் ராசி என்ன? நீங்க எந்த நோய்களால் அதிகம் கஷ்டப்படுவீங்கன்னு தெரியுமா?

உங்கள் ராசிக்கு ஏற்றவாறு உங்களது உணவுப் பழக்கத்தை மேற்கொண்டால், நீங்கள் சந்திக்கும் உடல்நல பிரச்சனைகளின் அளவு குறையும் என்பது தெரியுமா?. பிறந்த மாதத்தை வைத்து எந்நோயால் அவஸ்தைப்படுவீர்கள் என்பதை தெரிந்து கொள்ள வேண்டுமா?.
ஆம், சமீபத்திய ஆய்வு ஒன்றில், மேஷ ராசிக்காரர்கள் தங்களது ராசிக்கேற்ற உணவுப் பழக்கத்தை மேற்கொண்டதில், முன்பை விட குறைந்த அளவில் நோய்களால் அவஸ்தைப்பட்டது தெரிய வந்தது.
மேஷம்
மேஷ ராசிக்காரர்கள் தலைவலி மற்றும் மூக்கடைப்பால் கஷ்டப்படுவார்கள். இந்த ராசியைச் சேர்ந்தவர்கள் ஆப்ரிக்காட், வாழைப்பழம், அத்திப்பழம், ப்ராக்கோலி, பீன்ஸ் போன்றவற்றை உட்கொண்டு வந்தால், நீங்கள் தொடர்ந்து அவஸ்தைப்பட்டு வரும் பிரச்சனை மாயமாக மறையும்.
ரிஷபம்
ரிஷப ராசிக்காரர்கள் வயிறு சம்பந்தப்பட்ட பிரச்சனையால் கஷ்டப்படுவார்கள். அதிலும் வயிறு உப்புசத்தால் தான் ரிஷப ராசிக்காரர்கள் அவஸ்தைப்படுவார்கள். இந்த வயிறு உப்புசத்தை சரிசெய்ய, பசலைக்கீரை, காய்கறி சாலட், கிரான்பெர்ரி மற்றும் பருப்பு வகைகளை உணவில் சேர்த்துக் கொள்ள வேண்டும்.
மிதுனம்
மிதுன ராசிக்காரர்கள் அதிகமாக மன அழுத்தத்திற்கு உள்ளாவார்கள். எனவே மன அழுத்தத்தைக் கட்டுப்படுத்த சிறந்த உணவுகளான பாதாம், மோர், கிரேப் ஃபுரூட், அஸ்பாரகஸ் போன்றவற்றை உட்கொள்வதோடு, தண்ணீரை அதிகம் குடிக்க வேண்டும். இதனால மன அழுத்தம் குறைவதோடு, இதய நோய்கள் வராமலும் தடுக்கும்.
கடகம்
கடக ராசிக்காரர்கள் சற்று டென்சனாக இருந்தாலும், வயிறு முட்ட சாப்பிடுவார்கள். குறிப்பாக கலோரிகள் அதிகம் நிறைந்த தவறான உணவுகளைத் தான் உட்கொள்வார்கள். ஆனால் சரியான உணவுகளான பெர்ரிப் பழங்கள், பச்சை காய்கறிகள், மீன் போன்றவற்றை டென்சனாக இருக்கும் தருணங்களில் உட்கொண்டால், வயிறும் நிறையும், உடல் ஆரோக்கியமும் மேம்படும், டென்சனும் குறையும்.
சிம்மம்
சிம்ம ராசிக்காரர்கள் கொழுப்பு குறைவான உணவுகளை உட்கொள்வது, அவர்களை ஆரோக்கியமாகவும், ஃபிட்டாகவும் வைத்துக் கொள்ளும். அதிலும் சிம்ம ராசிக்காரர்கள் கடல் உணவுகள், எலுமிச்சை, தேங்காய், பீட்ரூட் போன்றவற்றை அதிகம் உட்கொள்வது நல்லது.
கன்னி
கன்னி ராசிக்காரர்கள் செரிமான பிரச்சனைகளை அதிகம் சந்திப்பார்கள். எனவே இந்த ராசிக்காரர்கள் நார்ச்சத்து அதிகம் உள்ள உணவுகளை உட்கொண்டு வந்தால், செரிமான பிரச்சனைகளில் இருந்து விடுபடலாம். அதில் நார்ச்சத்துள்ள உணவுகளான ஓட்ஸ், வாழைப்பழம், பப்பாளி போன்றவை குறிப்பிடத்தக்கவை.
துலாம்
துலாம் ராசிக்காரர்கள் பதப்படுத்தப்பட்ட உணவுகளையும், ஆல்கஹால் அருந்துவதையும் கட்டாயம் குறைத்துக் கொள்ள வேண்டும். ஏனெனில் இந்த இரண்டு உணவுகளின் மீதுள்ள ஆசையால் அதிகம் உட்கொண்டு, அதனால் பல பிரச்சனைகளை சந்திப்பார்கள். இந்த ராசிக்காரர்கள் பீட்ரூட், சோளம், கேரட், ஆப்பிள், உலர் திராட்சை போன்றவற்றை உட்கொள்வது நல்லது.
விருச்சிகம்
விருச்சிக ராசிக்காரர்கள் அதிகம் உணர்ச்சிவசப்படுவார்கள் மற்றும் நோய்த்தொற்றுகளால் அவஸ்தைப்படுவார்கள். எனவே இந்த ராசியைக் கொண்டவர்கள், பால், தயிர், வால்நட்ஸ், பாதாம், அன்னாசி போன்றவற்றை அதிகம் சேர்த்து வந்தால், உடலின் நோயெதிர்ப்பு சக்தி அதிகரித்து நோய்த்தொற்றுகளில் இருந்து விடுபடலாம்.
தனுசு
தனுசு ராசிக்காரர்களின் உடலில் கொழுப்புக்கள் அதிகம் தேங்கும். குறிப்பாக இடுப்பிலும், தொடையிலும் தான் கொழுப்புக்கள் சேரும். எனவே இந்த ராசிக்காரர்கள் தானியங்கள், ஸ்கிம்டு மில்க், மீன், தயிர் போன்றவற்றை உணவில் சேர்ப்பது நல்லது.
மகரம்
மகர ராசிக்காரர்கள் எலும்பு தொடர்பான பிரச்சனையை அதிகம் சந்திப்பார்கள். முட்டைக்கோஸ், பட்டாணி, உருளைக்கிழங்கு மற்றும் பசலைக்கீரை, ஓட்ஸ், பால் போன்றவற்றை அன்றாட உணவில் சேர்த்து வருவதன் மூலம் ஃபிட்டாகவும், ஆரோக்கியமாகவும் வாழலாம்.
கும்பம்
கும்ப ராசிக்காரர்கள் உயர் இரத்த அழுத்தத்தால் கஷ்டப்படுவார்கள். இதனை தவிர்க்க பீச், பேரிக்காய், அத்திப் பழம், எலுமிச்சை, பேரிச்சம் பழம், மாதுளை போன்றவற்றை அதிகம் உட்கொள்ள வேண்டும்.
மீனம்
மீன ராசிக்காரர்கள் சளி மற்றும் காய்ச்சலால் தான் அவஸ்தைப்படுவார்கள். இதனைத் தவிர்க்க வேண்டுமானால், மீன ராசிக்காரர்கள் சிக்கன், மட்டன், பீட்ரூட், சிட்ரஸ் பழங்கள் போன்றவற்றை அதிகம் உட்கொள்ள வேண்டும்.
- See more at: http://www.manithan.com/