Search This Blog

Friday, June 17, 2011

I would think that they would 'feel' rather than 'think'. Cass

I would think that they would 'feel' rather than 'think'.
Cass
n a new study, scientists have found a cabbage relative capable of remembering and responding to information

The Persistence Of Memory A Polish study showed plants send electrochemical signals in a way that can be likened to an animal nervous system. This image shows chemical reactions in leaves that were not exposed to light; they are reacting to a chemical signal from a leaf that was exposed. via BBC
Plants are able to remember information and react to it, thanks to an internal communications system that can be likened to a central nervous system in animals, according to a new study by a Polish plant biologist.
Plants "remember" information about light, and a certain type of cell transmits that information, much like nerves do in animals.
In the study, which was published in the early online version of the journal Plant Cell July 16, the researchers found that light shone on one leaf of an Arabidopsis thaliana plant caused the whole plant to respond. The response lasted even after the light source was taken away, suggesting the plant remembered the light input.
"The signaling continiues after the light is off; it is building short-term memory," said the lead author, Stanislaw Karpinski, in an e-mail message. "The leaves are able to physiologically 'memorize' different excess light episodes and use this stored information, for example, for improving their acclimation and immune defenses."
The leaves remember light quality as well as quantity, Karpinski added -- different wavelengths of light produce a different response, suggesting the plants use the information to generate protective chemical reactions like pathogen defense or food production.
As reported by the BBC July 14, scientists found that light shining on a leaf cell triggered a cascade of events that was immediately signaled to the rest of the plant via a type of cell called a bundle sheath cell. Those cells exist in every part of a plant. Karpinski, of the Warsaw University of Life Sciences in Poland, measured the electrical signals from those cells, and compared it to finding a central nervous system for plants.
Terence Murphy, a plant biology professor at the University of California-Davis who was not involved in the research, said shining light on that first leaf could have any number of effects.
"The leaf would be loaded up with starch, maybe; that's going to have a real effect on how it communicates through the phloem (vascular system) to other leaves. It's not unreasonable that you could illuminate one leaf and affect the other leaves," he said

No comments:

Post a Comment